Переделка асинхронного двигателя в генератор на магнитах

Переделка асинхронного двигателя в генератор на магнитах

Картинки с разных страниц сайта, нажмите на картинку для перехода на страницу

Переделываем асинхронный двигатель под генератор для ветряка

Сначало надо подобрать подходящий двигатель, который наиболее подойдёт для работы в качестве низкооборотистого генератора. Это многополюсные асинхронные двигатели, хорошо подходят 6-ти и 8-ми полюсные, низкооборотистые двигатели, с максимальными оборотами в режиме двигателя не более 1350об/м. Такие двигатели имеют наибольшее количество полюсов и зубцов на статоре.

Далее нужно разобрать двигатель и извлечь якорь-ротор, который надо сточить на станке до опредлённых размеров под наклеивание магнитов. Магниты неодимые, обычно клеят маленькие круглые магнитики. Сейчас я попробую расказать как и сколько магнитов клеить.

Для начала нужно узнать сколько у вашего мотора полюсов, но по обмотке это понять достаточно трудно без соответствующего опыта, поэтому количество полюсов лучше прочитать на маркировке двигателя, если она конечно имеется, хотя в большенстве случаев она имеется. Ниже приведён пример маркировки двигателя и расшифровка маркировки.

По марке двигателя. Для 3х фазных: Тип двигателя Мощность, кВт Напряжение, В Частота вращения, (синх.), об/мин КПД, % Масса, кг

Например: ДАФ3 400-6-10 УХЛ1 400 6000 600 93,7 4580 Расшифровка обозначения двигателя: Д – двигатель; А – асинхронный; Ф – с фазным ротором; 3 – закрытое исполнение; 400 – мощность, кВт; б – напряжение, кВ; 10 – число полюсов; УХЛ – климатическое исполнение; 1 – категория размещения.

Бывает так, что двигатели не нашего производства как на фото выше, и маркировка непонятна, или маркировка просто не читаема. Тогда остаётся один метод, это посчитать сколько у вас зубцов на статоре и сколько зубцов занимает одна катушка. Если наприер катушка занимает 4 зубца, а их всего 24, то ваш мотор шестиполюсной.

Количество полюсов статора нужно знать для того, чтобы определиться с количеством полюсов при наклейке магнитов на ротор. Это количество обычно равное, то-есть если полюсов статора 6, то и магниты надо клееть с чередованием полюсов в количестве 6, SNSNSN.

Теперь, когда число полюсов известно надо рассчитать число магнитов для ротора. Для этого надо выссчитать длинну оружности ротора, по простой формуле 2nR где n=3,14. Тоесть 3,14 умножаем на 2 и на радис ротора, получается длинна окружности. Длее замеряем свой ротор по длинне железа, которое в алюминиевой оправке. После можно нарисовать полученную полосу с длинной и шириной, можно на компьютере и потом распечатать.

Терерь нужно определится с толщиной магнитов, она примерно равна 10-15% от диаметра ротора, например если ротор 60мм, то магниты нужны толщиной 5-7мм. Для этого магниты покупают обычно круглые. Если ротор примерно 6см вдиаметре, то магниты можно высотой 6-10 мм. Определившись какие магниты использовать, на шаблоне длинна которой равна длинне окрушности

Пример рассчёта магнитов для ротора, например диаметр ротора 60см, высчитываем длинну окружности =188см. Делим длинну на количество полюсов, в данном случае на 6, и получаем 6 секций, в каждой секции магниты вклеиваются одинаковым полюсом. Но это ещё не всё. Терепь надо высчитать сколько магнитов войдёт в один полюс, чтобы их ровно распределить по полюсу. Например ширина круглого магнита 1см,расстояние между магнитами около 2-3мм, значит 10мм +3=13мм.

Длинну окружности делим на 6 частей=31мм, это ширина одного полюса по длинне окружности ротора, а ширина полюса по железу, дапустим 60мм. Значит получается площаадь полюса 60 на 31 мм. Это получается 8 в 2 ряда магнитов на полюс с расстоянием между собой 5мм. В этом случае надо пересчитать количество магнитов, чтобы они как можно плотнее уместились на полюсе.

Сдесь пример на магнитах шириной 10мм, поэтому получается расстояние между ними 5мм. Если уменьшить диаметр магнитов например в 2 раза, то-есть 5мм, то они более плотно заполнят полюс вследствие чего увеличится магнитное поле от большего каличества общей массы магнитом . Таких магнитов(5мм) поместится уже 5 рядов , а в длинну 10, то-есть 50 магнитов на полюс, и общее количество на ротор 300шт.

Для того чтобы уменьшить залипание шаблон нужно разметить так, чтобы смещение магнитов при наклейке было на ширину одного магнита, если ширина магнита 5мм, то и смещение на 5мм.

Теперь когда с магнитами опрделились нужно проточить ротор, чтобы поместились магниты. Если высота магнитов 6мм, то стачивается диамет на 12+1мм, 1мм это запас на кривезну рук. Магниты можно разместить на роторе двумя способами.

Первый способ это предвартельно делается оправка, в которой сврлятся отверстия под магниты по шаблону, после оправка одевается на ротор, и магниты вклеиваются в просверленые отверстия. На роторе после проточки нужно дополнительно сточить на глубину равную высоте магнитов разделительный алюминиевые полоски между железом. А полученные бороздки заполнить отожжоными опилками смешаные с эпоксидным клеем. Это значительно уведличит эффективность, опилки будут служить дополнительным магнитопроводом между железом ротора. Выборку можно сделать отрезной машинкой или на станке.

Оправка для наклейки магнитов делается так, проточеный вал оборачивают полеинтеленом, потом наматывают слой за слоем бинт, пропитанный эпоксидным клеем, после стачивают на станке под размер и снимают с ротора, наклеивают шоблон и сверлют отверстия под магниты.После девают оправку обратно на ротор и наклеивают магниты Клеют обычно на эпоксидный клей Ниже на фото два примера наклейки агнитов, первый пример на 2-х фотоэто наклейка магнитов с помощъю оправки, а второй на следующей странице прямо через шаблон.На первых двух фотографиях хорошо видно и я думаю понятно как клеются магниты.

На следующей странице продолжение. читать далее.

Самодельный электрогенератор из асинхронного двигателя

  1. Конструкция и принцип действия асинхронного двигателя
  2. Конструкция и принцип действия электрогенератора
  3. От электродвигателя к электрогенератору
  4. Смысл переделки
  5. Что нужно для переделки?
  6. От теории к практике
  7. Как соединять?

Энергия электрического тока, входя внутрь асинхронного двигателя, легко переходит в энергию движения на выходе из него. А что делать, если требуется обратное превращение? В таком случае можно соорудить самодельный генератор из асинхронного двигателя. Только функционировать будет он в другом режиме: за счет совершения механической работы начнет вырабатываться электричество. Идеальное решение – перевоплощение в ветрогенератор – источник бесплатной энергии.

Конструкция и принцип действия асинхронного двигателя

Экспериментально доказано, что магнитное поле создается переменным электрическим полем. На этом и основан принцип действия асинхронного двигателя, конструкция которого включает в себя:

  • Корпус – это то, что мы видим снаружи;
  • Статор – неподвижная часть электродвигателя;
  • Ротор – элемент, приводящийся в движение.

У статора главный элемент – обмотка, на которую подается переменное напряжение (принцип действия не на постоянных магнитах, а на магнитном поле, повреждающемся переменным электрическим). В роли ротора выступает цилиндр с пазами, в которые уложена намотка. Но поступающий на нее ток имеет противоположное направление. В результате образуется два переменных электрических поля. Каждое из них создает по магнитному полю, которые начинают взаимодействовать между собой. Но устройство статора таково, что он не может двигаться. Поэтому результатом взаимодействия двух магнитных полей становится вращение ротора.

Конструкция и принцип действия электрогенератора

Опытами подтверждается и то, что магнитное поле создает переменное электрическое поле. Ниже показана схема, которая доступно иллюстрирует принцип действия генератора.

Если металлическую рамку поместить и повращать в магнитном поле, то пронизывающий ее магнитный поток начнет меняться. Это приведет к образованию индукционного тока внутри рамки. Если соединить концы с потребителем тока, к примеру, с электрической лампой, то можно наблюдать ее свечение. Это говорит о том, что механическая энергия, затрачиваемая на вращение рамки внутри магнитного поля, превратилась в электрическую энергию, которая помогла загореться лампе.

Конструктивно электрогенератор состоит их тех же частей, что и электродвигатель: из корпуса, статора и ротора. Разница заключается лишь в принципе действия. Не ротор приводится в движение от магнитного поля, создаваемого электрическим в статорной намотке. А появляется электрический ток в обмотке статора за счет изменения магнитного потока, пронизывающего ее, благодаря принудительному вращению ротора.

От электродвигателя к электрогенератору

Жизнь человека сегодня немыслима без электричества. Поэтому всюду строятся электростанции, преобразующие энергию воды, ветра и атомных ядер в электрическую энергию. Она стала универсальной, потому что ее можно преобразовать в энергию движения, тепла и света. Это стало причиной массового распространения электродвигателей. Электрогенераторы менее популярны, потому что электричеством государство снабжает централизованно. Но все же иногда случается, что электроэнергия отсутствует, и получить ее неоткуда. В таком случае вам поможет генератор из асинхронного двигателя.

Мы уже говорили выше, что конструктивно электрогенератор и двигатель похожи друг на друга. Отсюда возникает вопрос: нельзя ли это чудо техники использовать в качестве источника как механической, так и электрической энергии? Оказывается, можно. И мы расскажем, как своими руками переделать мотор в источник тока.

Смысл переделки

Если понадобился электрогенератор, зачем его делать из двигателя, если можно купить новое оборудование? Однако качественная электротехника – удовольствие не из дешевых. И если у вас есть не использующийся в данный момент мотор, почему бы ему не сослужить добрую службу? Путем простых манипуляций и с минимальными затратами вы получите отличный источник тока, который сможет питать приборы, обладающие активной нагрузкой. К таким относятся компьютерная, электронная и радиотехника, обыкновенные лампы, обогреватели и сварочные преобразователи.

Но экономия – не единственный плюс. Преимущества электрического генератора тока, сооруженного из асинхронного электродвигателя:

  • Конструкция проще, чем у синхронного аналога;
  • Максимальная защита внутренностей от влаги и пыли;
  • Высокая устойчивость к перегрузкам и короткому замыканию;
  • Почти полное отсутствие нелинейных искажений;
  • Клирфактор (величина, выражающая неравномерность вращения ротора) не более 2%;
  • Обмотки во время работы статичны, поэтому долго не изнашиваются, увеличивая эксплуатационный срок;
  • Выработанное электричество сразу обладает напряжением 220В или 380В в зависимости от того, какой двигатель вы решили переделать: однофазный или трехфазный. Это значит, что к генератору можно напрямую подключать потребителей тока, без инверторов.

Даже если электрогенератор не сможет полностью обеспечить ваши нужды, его можно использовать совместно с централизованным электроснабжением. В этом случае речь снова идет об экономии: платить придется меньше. Выгода будет выражаться в разности, полученной путем вычитания выработанного электричества из суммы потребленной электроэнергии.

Читайте также  Станок из двигателя от стиральной машины своими руками

Что нужно для переделки?

Чтобы своими руками смастерить генератор из асинхронного двигателя, нужно сначала понять, что мешает преобразованию электрической энергии из механической. Напомним, что для образования индукционного тока необходимо наличие изменяющегося со временем магнитного поля. При работе оборудования в режиме мотора оно создается и в статоре, и в роторе за счет питания от сети. Если же перевести технику в режим генератора, окажется, что магнитного поля нет совсем. Откуда же ему взяться?

После работы оборудования в режиме двигателя ротор сохраняет остаточную намагниченность. Именно она от принудительного вращения вызывает индукционный ток в статоре. А для того чтобы магнитное поле сохранялось, потребуется установка конденсаторов, которые обладает током емкостным. Именно он будет поддерживать намагниченность за счет самовозбуждения.

С вопросом, откуда взялось исходное магнитное поле, мы разобрались. Но как приводить в движение ротор? Конечно, если вы раскрутите его своими руками, можно будет питать небольшую лампочку. Но вряд ли результат удовлетворит вас. Идеальное решение – превращение мотора в ветрогенератор, или ветряк.

Так называют устройство, преобразующее кинетическую энергию ветра в механическую, а затем – в электрическую. Ветрогенераторы снабжены лопастями, которые при встрече с ветром приводятся в движение. Вращаться они могут как в вертикальной, так и в горизонтальной плоскости.

От теории к практике

Соорудим ветрогенератор из мотора своими руками. Для простого понимания к инструкции прилагаются схемы и видео. Вам понадобятся:

  • Устройство для передачи энергии ветра к ротору;
  • Конденсаторы на каждую обмотку статора.

Сформулировать правило, по которому бы вы могли с первого раза подобрать устройство для улавливания ветра, сложно. Тут нужно руководствоваться тем, что при работе техники в генераторном режиме частота вращения ротора должна быть выше на 10%, чем при работе в качестве двигателя. Учитывать нужно частоту не номинальную, а холостого хода. Пример: номинальная частота 1000 оборотов, а в холостом режиме – 1400. Тогда для выработки тока понадобится частота, равная примерно 1540 оборотам в минуту.

Подбор конденсаторов по емкости производится по формуле:

C – искомая емкость. Q – скорость вращения ротора в оборотах в минуту. П – число «пи», равное 3,14. f – фазовая частота (постоянная величина для России, равная 50 Герцам). U – напряжение в сети (220, если одна фаза, и 380, если три).

Пример расчета: трехфазный ротор вращается со скоростью 2500 оборотов в минуту. Тогда C = 2500/(2*3,14*50*380*380)=56 мкФ.

Внимание! Не подбирайте емкость больше расчетной величины. Иначе будет высоким активное сопротивление, что приведет к перегреву генератора. Это может произойти и тогда, когда устройство будет запускаться без нагрузки. В таком случае будет полезно уменьшить емкость конденсатора. Чтобы это было просто сделать своими руками, ставьте емкость не цельную, а сборную. Например, 60 мкФ можно составить из 6 штук по 10 мкФ, соединенных параллельно друг другу.

Как соединять?

Рассмотрим, как сделать генератор из асинхронного двигателя, на примере трехфазного мотора:

  1. Соедините вал с устройством, приводящим во вращение ротор за счет энергии ветра;
  2. Подключите конденсаторы по схеме треугольник, вершины которого соедините с концами звезды или вершинами треугольника статора (зависит от типа соединения намоток);
  3. Если на выходе требуется напряжение 220 Вольт, соедините статорные намотки в треугольник (конец первой обмотки – с началом второй, конец второй – с началом третьей, конец третьей – с началом первой);
  4. Если вам нужно запитать приборы от 380 Вольт, то для соединения статорных обмоток подойдет схема «звезда». Для этого соедините начало всех намоток вместе, а концы подключите к соответствующим емкостям.

Пошаговая инструкция о том, как сделать своими руками однофазный ветрогенератор малой мощности:

  1. Вытащите из старой стиральной машины электродвигатель;
  2. Определите рабочую намотку и подключите параллельно ей конденсатор;
  3. Обеспечьте вращение ротора за счет энергии ветра.

Получится ветряк, как на видео, и он выдаст 220 Вольт.

Для электроприборов, питающихся от постоянного тока, дополнительно потребуется установка выпрямителя. А если вы заинтересованы в контроле параметров источника питания, установите на выходе амперметр и вольтметр.

Совет! Ветрогенераторы в связи с отсутствием постоянного ветра могут иногда прекращать работу или работать не в полную силу. Поэтому удобно организовать собственную электростанцию. Для этого ветряк подключают во время ветряной погоды к аккумулятору. Накопленную электроэнергию можно будет использовать во время штиля.

Электродвигатель – это устройство, выступающее в качестве преобразователя энергии и работающее в режиме получения механической энергии из электрической. Путем несложных превращений без использования постоянного магнита, но благодаря остаточной намагниченности, мотор начинает работать в качестве источника питания. Это два взаимообратных явления, помогающие вам экономить: не нужно покупать ветрогенератор, если без дела валяется электрический двигатель. Смотрите видео и учитесь.

Ветрогенератор на асинхронном двигателе своими руками

В качестве генератора для ветряка было решено переделать асинхронный двигатель. Такая переделка очень проста и доступна, поэтому в самодельных конструкциях ветрогенераторов часто можно видеть генераторы сделанные из асинхронных двигателей.

Переделка заключается в проточке ротора под магниты, далее магниты обычно по шаблону приклеивают к ротору и заливают эпоксидной смолой чтобы не отлетели. Так-же обычно перематывают статор более толстым проводом чтобы уменьшить слишком большое напряжение и поднять силу тока. Но этот двигатель не хотелось перематывать и было решено оставить все как есть, только переделать ротор на магниты. В качестве донора был найден трехфазный асинхронный двигатель мощностью 1,32Кв. Ниже фото данного электродвигателя.

асинхронный двигатель переделка в генератор Ротор электродвигателя был проточен на токарном станке на толщину магнитов. В этом роторе не применяется металлическая гильза, которую обычно вытачивают и надевают на ротор под магниты. Гильза нужна для усиления магнитной индукции, через нее магниты замыкают свои поля питая из под низа друг друга и магнитное поле не рассеивается, а идет все в статор. В этой конструкции применены достаточно сильные магниты размером 7,6*6мм в количестве 160 шт., которые и без гильзы обеспечат хорошую ЭДС.

Сначала, перед наклейкой магнитов ротор был размечен на четыре полюса, и со скосом были расположены магниты. Двигатель был четырех-полюсной и так как статор не перематывался на роторе тоже должно быть четыре магнитных полюса. Каждый магнитный полюс чередуется, один полюс условно “север”, второй полюс “юг”. Магнитные полюса сделаны с промежутками, так в полюсах магниты сгруппированы плотнее. Магниты после размещения на роторе были замотаны скотчем для фиксации и залиты эпоксидной смолой.

После сборки ощущалось залипание ротора, при вращение вала чувствовались залипания. Было решено переделать ротор. Магниты были сбиты вместе с эпоксидной смолой и снова размещены, но теперь они более менее равномерно установлены по всему ротору, ниже фото ротора с магнитами перед заливкой эпоксидной смолой. После заливки залипание несколько снизилось и было замечено что немного упало напряжение при вращении генератора на одних и тех же оборотах и немного подрос ток.

После сборки готовый генератор было решено покрутить дрелью и что нибудь к ниму подключить в качестве нагрузки. Подключалась лампочка на 220 вольт 60 ватт, при 800-1000 об/м она горела в полный накал. Так-же для проверки на что способен генератор была подключена лампа мощностью 1 Кв, она горела в полнакала и сильнее дрель не осилила крутить генератор.

В холостую на максимальных оборотах дрели 2800 об/м напряжение генератора было более 400 вольт. При оборотах примерно 800 об/м напряжение 160 вольт. Так-же попробовали подключить кипятильник на 500 ватт, после минуты кручения вода в стакане стала горячей. Вот такие испытания прошел генератор, который был сделан из асинхронного двигателя.

Далее дошла очередь до винта. Лопасти для ветрогенератора были вырезаны из ПВХ трубы диаметром160мм. Ниже на фото сам винт диаметром 1,7 м., и расчетные данные, по которым делались лопасти.

После для генератора была сварена стойка с поворотной осью для крепления генератора и хвоста. Конструкция сделана по схеме с уводом ветроголовки от ветра методом складывания хвоста, поэтому генератор смещен от центра оси, а штырек позади, это шкворень, на который одевается хвост.

Здесь фото готового ветрогенератора. Ветрогенератор был установлен на девятиметровую мачту. Генератор при силе ветра выдавал напряжение холостого хода до 80 вольт. К нему пробовали подсоединять тенн на два киловатта, через некоторое время тенн стал теплым, значит ветрогенератор все-таки имеет какую-то мощность.

Потом был собран контроллер для ветрогенератора и через него подключен аккумулятор на зарядку . Зарядка была достаточно хорошим током, аккумулятор быстро зашумел, как будто его заряжают от зарядного устройства.

Данные на шиндике электродвигателя говорили 220/380 вольт 6,2/3,6 А.значит сопротивление генератора 35,4Ом треугольник/105,5 Ом звезда. Если он заряжал 12-ти вольтовый аккумулятор по схеме включения фаз генератора в треугольник, что скорее всего, то 80-12/35,4=1,9А. Получается при ветре 8-9 м/с ток зарядки был примерно 1,9 А, а это всего 23 ватт/ч, да немного, но может я где-то ошибся.

Такие большие потери из-за высокого сопротивления генератора, поэтому статор обычно перематывают более толстым проводом чтобы уменьшить сопротивление генератора, которое влияет на силу тока, и чем выше сопротивление обмотки генератора, тем меньше сила тока и выше напряжение.

Как сделать генератор для ветряка из асинхронного двигателя своими руками

Эти работы между собой не имеют практически ничего общего, так как надо сделать разные по сути и назначению узлы системы. Для изготовления того и другого элемента используются подручные механизмы и приспособления, которые можно использовать или переделать в необходимый узел. Один из вариантов создания генератора, часто используемый при изготовлении ветрогенератора — изготовление из асинхронного электродвигателя, которое наиболее удачно и качественно позволяет решить проблему. Рассмотрим вопрос подробнее:

Схема генератора из асинхронного двигателя

схема генератора на базе асинхронного двигателя

Читайте также  Как работает двигатель переменного тока?

В фактически любой машине электрического типа, сконструированной по типу генератора, имеются 2 разные активные обмотки, без которых невозможно функционирование устройства:

  1. Обмотка возбуждения, которая находится на специальном якоре.
  2. Статорная обмотка, которая отвечает за образование электрического тока, данный процесс происходит внутри нее.

Для того, чтобы наглядно представить и точнее понять все процессы, происходящие во время функционирования генератора, наиболее оптимальным вариантом будет подробнее рассмотреть схему его работы:

  1. Напряжение, которое подается от аккумулятора или любого иного источника, создает магнитное поле в якорной обмотке.
  2. Вращение элементов устройства вместе с магнитным полем можно реализовать разными способами, в том числе и вручную.
  3. Магнитное поле, вращающееся с определенной скоростью, порождает электромагнитную индукцию, благодаря чему в обмотке появляется электрический ток.
  4. Подавляющее большинство используемых на сегодняшний день схем не имеет возможностей для обеспечения якорной обмотки напряжением, это связано с наличием в конструкции короткозамкнутого ротора. Поэтому, вне зависимости от скорости и времени вращения вала, питающие клеммы устройства все равно будут обесточены.

К положительным качествам разработки принадлежат:

  1. Простая и быстрая сборка с возможностью избежать разборки электродвигателя и перемотки обмотки.
  2. Способность осуществлять вращение электротока с помощью ветряной либо гидротурбины.
  3. Применение устройства в системах мотор-генератор, чтобы преобразовать однофазную сеть (220В) на трехфазную (380 В).
  4. Способность использовать разработку в местах отсутствия электричества, применяя для раскрутки двигатель внутреннего сгорания.

Минусы:

  1. Проблематичность расчета емкости конденсата, который присоединяется к обмоткам.
  2. Сложно достичь максимальной отметки мощности, на которую способна самостоятельная разработка.

Самодельный генератор из асинхронного двигателя

Материалы и инструменты

Чтобы сделать ветрогенератор, достаточно иметь асинхронный двигатель, который и придется переделывать. В то же время придется запастись рядом материалов:

  • стальная труба, минимальный диаметр которой должен составлять 7 см, используемая в качестве материала для мачты;
  • труба из ПВХ или металла, из которой будут изготовлены лопасти. Альтернативой им может выступать деревянная доска, профиль из стеклоткани, на который наносят эпоксидную смолу либо готовые лопасти;
  • бетон послужит материалом для опоры, хотя его можно заменить деревом и металлом.
  • дрель с набором сверл;
  • ножовка, рулетка, разводной и газовый ключ;
  • стальная рама, при помощи которой будет выполняться монтаж лопастей и генератора с поворотным узлом;
  • стальной лист, который послужит материалом для хвоста;
  • инструмент, при помощи которого будут изготовлены необходимые детали;
  • костыли и хомуты — с их помощью будет выполнен монтаж растяжек;
  • металлический трос, сечение которого должно составлять 12 мм — на его основе и будут делаться растяжки.

Готовимся к изготовлению генератора

Если решили «сварганить по-быстрому» свой собственный самодельный электрогенератор, «переклепав» двигатель от стиральной машины, лучше сразу отбросьте иллюзии в сторону, ибо «по-быстрому» не получится. Для начала нужно будет решить три основные проблемы:

  • как частично убрать сердечник старого рабочего двигателя от стиральной машины и подготовить на нем пазы под магниты;
  • где взять неодимовые магниты для ротора генератора;
  • из чего сделать шаблон для крепления магнитов.

Решим первую проблему. Возьмем асинхронный двигатель от старой «стиралки», разберем его корпус, а затем, воспользовавшись токарным станком, срежем часть сердечника на глубину около 2 мм. Отложим пока двигатель в сторонку. Дальше нам нужно будет приобрести комплект неодимовых магнитов, легче всего их заказать в интернет магазине. Ждем, когда магниты придут.

После этого вырезаем на станке пазы на сердечнике двигателя, глубиной 5 мм, под магниты. Здесь нужно виртуозно владеть токарным станком, лучше всего позвать на помощь какого-нибудь знакомого токаря. После того как подготовите сердечник двигателя, нужно будет подумать из чего сделать шаблон для крепления магнитов. Мы использовали полоску жести, хотя допускаем, что может подойти и другой материал с подобными свойствами. Вырезаем полоску по длине и ширине так, чтобы она точно легла на поверхность сердечника.

Жестяную полоску также надлежит подготовить, а именно, разметить ее по всей длине для размещения на ней 2 рядов магнитов так, чтобы магниты располагались на одинаковом расстоянии. Далее для переделки электродвигателя стиральной машины в генератор, нам понадобится суперклей, холодная сварка, можно вместо сварки взять эпоксидную смолу, а также наждачная бумага.

К сведению! Лучше взять холодную сварку, с ней проще работать, к тому же она сразу поможет лучше закрепить магниты, облегчая вам задачу по их наклеиванию.

Как проверить генератор

Что понадобится для проверки:

  • контроллер;
  • тестер;
  • выпрямитель;
  • аккумулятор.

При помощи мультиметра отыщите два провода, ведущие к рабочей обмотке, они должны показывать одинаковое сопротивление. Остальные провода обрезаем за ненадобностью.

Теперь провода рабочей обмотки подсоедините к выпрямителю. Последний подключается к контроллеру, который в свою очередь соединен с аккумулятором. Чтобы проверить, какую мощность выдает генератор, подсоедините щупы мультиметра (настроенного в режиме вольтметра) к аккумулятору.

С помощью дрели или шуруповерта раскручивайте электрогенератор со скоростью 800-1000 оборотов в минуту. Если на мультиметре показало от 200 до 300 Вольт – это прекрасный результат. Если напряжение небольшое, скорее всего, магниты установлены неравномерно.

Советы по эксплуатации: какие трудности могут возникнуть

Частым проблемным явлением работы генератора является перегрузка по мощности. При ней идет интенсивный нагрев обмотки, пробой изоляции. Как следствие — поломка генератора. Возникает из-за:

  • Неверного подбора емкости конденсаторной батареи;
  • Подсоединения большого количества электротехники, суммарная мощность которой превышает номинальную мощность.

О правилах подбора емкости и расчетах мы уже говорили выше. А по проблеме перегруза по мощности в генераторе на три фазы, нужно отметить еще некоторые нюансы при подключении однофазных потребителей:

  • Потребителей с вольтажом 220 Вольт можно подключать только на одну треть общей мощности (к примеру, если ген выдает 6 кВт, то это только для приборов на 380 Вольт, а для однофазных будет только 2 кВт, не больше). Иначе, возникнет перегрузка.
  • Если у вашего генератора две однофазных линии, то вместе мощность по ним будет составлять 2/3 от общего показателя мощности. То есть, 6 кВт — это 4 кВт для однофазных, по 2 кВт на каждую фазу. Причем, при одновременном задействовании фаз, следите, чтоб нагрузка не отличалась от мощности до 10%, иначе возникнет явление «перекос фаз», и ток поступать не будет.

При работе важно следить за показателем частоты переменного тока. Если вы не встроили частотомер на общий электрощит, то на холостом ходу выходной вольтаж выше значения 380 Вольт (или 220 при подключении однофазных) на 4÷6 процентов.

Переделка асинхронного двигателя в генератор на магнитах

Электрики давно научились извлекать пользу из принципа обратимости электрических машин: когда попадает в руки вроде бы ненужный трехфазный движок, то его можно раскрутить от бытовой сети или вырабатывать бесплатную электрическую энергию.

Но в данном материале мы не собираемся “вешать лапшу” про свободную и бесплатную энергию или про “гениев”, подключивших лампочку к батарейке. И так:

Асинхронные электродвигатели

В статье рассказано о том, как построить трёхфазный (однофазный) генератор 220/380 В на базе асинхронного электродвигателя переменного тока. Трехфазный асинхронный электродвигатель, изобретённый в конце 19-го века русским учёным-электротехником М.О. Доливо-Добровольским, получил в настоящее время преимущественное распространение и в промышленности, и в сельском хозяйстве, а также в быту.

Асинхронные электродвигатели – самые простые и надёжные в эксплуатации. Поэтому во всех случаях, когда это допустимо по условиям электропривода и нет необходимости в компенсации реактивной мощности, следует применять асинхронные электродвигатели переменного тока.

Различают два основных вида асинхронных двигателей: с короткозамкнутым ротором и с фазным ротором. Асинхронный короткозамкнутый электродвигатель состоит из неподвижной части – статора и подвижной части – ротора, вращающегося в подшипниках, укреплённых в двух щитах двигателя. Сердечники статора и ротора набраны из отдельных изолированных один от другого листов электротехнической стали. В пазы сердечника статора уложена обмотка, выполненная из изолированного провода. В пазы сердечника ротора укладывают стержневую обмотку или заливают расплавленный алюминий. Кольца-перемычки накоротко замыкают обмотку ротора по концам (отсюда и название – короткозамкнутый). В отличие от короткозамкнутого ротора, в пазах фазного ротора размещают обмотку, выполненную по типу обмотки статора. Концы обмотки подводят к контактным кольцам, укреплённым на валу. По кольцам скользят щетки, соединяя обмотку с пусковым или регулировочным реостатом.

Асинхронные электродвигатели с фазным ротором являются более дорогостоящими устройствами, требуют квалифицированного обслуживания, менее надёжны, а потому применяются только в тех отраслях производства, в которых без них обойтись нельзя. По этой причине они мало распространены, и мы их в дальнейшем рассматривать не будем.

Генератор асинхронного или индукционного типа представляет собой особую разновидность устройств, использующую переменный ток и имеющую способность воспроизведения электроэнергии. Главной особенностью является совершение довольно быстрых поворотов, которые делает ротор, по скорости вращения этого элемента он в значительной степени превосходит синхронную разновидность.

Одним из главных преимуществ является возможность использования данного устройства без существенных преобразований схемы или длительного настраивания.

Однофазную разновидность индукционного генератора можно подключить путем подачи на него необходимого напряжения, для этого потребуется подсоединение его к источнику питания. Однако, ряд моделей производит самовозбуждение, эта способность позволяет им функционировать в режиме, независимом от каких-либо внешних источников.

Осуществляется это благодаря последовательному приведению конденсаторов в рабочее состояние.

Схема генератора из асинхронного двигателя


Нажмите на изображение чтобы увеличить

В фактически любой машине электрического типа, сконструированной по типу генератора, имеются 2 разные активные обмотки, без которых невозможно функционирование устройства:

  • Обмотка возбуждения, которая находится на специальном якоре.
  • Статорная обмотка, которая отвечает за образование электрического тока, данный процесс происходит внутри нее.

Для того, чтобы наглядно представить и точнее понять все процессы, происходящие во время функционирования генератора, наиболее оптимальным вариантом будет подробнее рассмотреть схему его работы:

  • Напряжение, которое подается от аккумулятора или любого иного источника, создает магнитное поле в якорной обмотке.
  • Вращение элементов устройства вместе с магнитным полем можно реализовать разными способами, в том числе и вручную.
  • Магнитное поле, вращающееся с определенной скоростью, порождает электромагнитную индукцию, благодаря чему в обмотке появляется электрический ток.
  • Подавляющее большинство используемых на сегодняшний день схем не имеет возможностей для обеспечения якорной обмотки напряжением, это связано с наличием в конструкции короткозамкнутого ротора. Поэтому, вне зависимости от скорости и времени вращения вала, питающие клеммы устройства все равно будут обесточены.
Читайте также  Как проверить обороты двигателя без тахометра?

При переделывании двигателя в генератор, самостоятельное создание движущегося магнитного поля является одним из основных и обязательных условий.

Устройство генератора


Нажмите на изображение чтобы увеличить

Перед тем, как предпринимать какие-либо действия по переделыванию асинхронного двигателя в генератор, необходимо понять устройство данной машины, которое выглядит следующим образом:

  • Статор, который оснащен сетевой обмоткой с 3 фазами, размещенной по его рабочей поверхности.
  • Обмотка организована таким образом, что напоминает по своей форме звезду: 3 начальных элемента соединяются между собой, а 3 противоположных стороны соединены с контактными кольцами, которые не имеют никаких точек соприкосновений между собой.
  • Контактные кольца имеют надежный крепеж к валу ротора.
  • В конструкции имеются специальные щетки, которые не совершают никаких самостоятельных движений, но способствуют включению реостата с тремя фазами. Это позволяет осуществлять изменение параметров сопротивления обмотки, находящейся на роторе.
  • Нередко, во внутреннем устройстве присутствует такой элемент, как автоматический короткозамыкатель, необходимый для того, чтобы закоротить обмотку и остановить реостат, находящийся в рабочем состоянии.
  • Еще одним дополнительным элементом устройства генератора может являться специальное приспособление, которое разводит щетки и контактные кольца в тот момент, когда они проходят стадию замыкания. Подобная мера способствует значительному уменьшению потерь, отводимых на трение.

Изготовление генератора из двигателя

Фактически, любой асинхронный электродвигатель можно собственными руками переделать в устройство, функционирующее по типу генератора, который затем допускается использовать в быту. Для этой цели может подойти даже двигатель, взятый из стиральной машинки старого образца или любого иного бытового оборудования.

Чтобы данный процесс был благополучно реализован, рекомендуется придерживаться следующего алгоритма действий:

  • Снять слой сердечника двигателя, благодаря чему будет образовано углубление в его структуре.
  • Осуществить это можно на токарном станке, рекомендуется снять 2 мм. по всему сердечнику и проделать дополнительные отверстия с глубиной около 5 мм.
  • Снять размеры с полученного ротора, после чего из жестяного материала изготовить шаблон в виде полосы, который будет соответствовать габаритам устройства.
  • Установить в образовавшемся свободном пространстве неодимовые магниты, которые необходимо заранее приобрести. На каждый полюс потребуется не менее 8 магнитных элементов.
  • Фиксацию магнитов можно осуществить при помощи универсального суперклея, но необходимо учитывать, что при приближении к поверхности ротора они будут менять свое положение, поэтому их необходимо крепко удерживать руками пока каждый элемент не приклеится. Дополнительно рекомендуется использовать во время этого процесса защитные очки, чтобы избежать попадания брызг клея в глаза.
  • Обернуть ротор обычной бумагой и скотчем, который потребуется для ее фиксации.
  • Торцовую часть ротора залепить пластилином, что обеспечит герметизацию устройства.
  • После совершенных действий необходимо произвести обработку свободных полостей, между магнитными элементами. Для этого оставшееся между магнитами свободное пространство необходимо залить эпоксидной смолой. Удобнее всего будет прорезать специальное отверстие в оболочке, преобразовать его в горлышко и залепить границы при помощи пластилина. Внутрь можно заливать смолу.
  • Дождаться полного застывания залитой смолы, после чего защитную бумажную оболочку можно устранить.
  • Ротор необходимо зафиксировать при помощи станка или тисков, чтобы можно было провести его обработку, которая заключается в шлифовании поверхности. Для этих целей можно использовать наждачную бумагу со средним параметром зернистости.
  • Определить состояние и предназначение проводов, выходящих из двигателя. Двое должны вести к рабочей обмотке, остальные можно обрезать, чтобы не запутаться в дальнейшем.
  • Иногда процесс вращения осуществляется довольно плохо, чаще всего причиной являются старые износившиеся и тугие подшипники, в таком случае их можно заменить новыми.
  • Выпрямитель для генератора можно собрать из специальных кремниевых диодов, которые предназначены именно для этих целей. Также потребуется контроллер для зарядки, подходят фактически все современные модели.

После совершения всех названных действий, процесс можно считать завершенным, асинхронный двигатель был преобразован в генератор такого же типа.

Оценка уровня эффективности – выгодно ли это?

Генерация электрического тока электродвигателем вполне реальна и реализуема на практике, основной вопрос заключается в том, насколько это выгодно?

Сравнение осуществляется в первую очередь с синхронной разновидностью аналогичного устройства, в котором отсутствует электрическая цепь возбуждения, но несмотря на этот факт, его устройство и конструкция не являются более простыми.

Обуславливается это наличием конденсаторной батареи, являющейся крайне сложным в техническом плане элементом, который отсутствует у асинхронного генератора.

Основное преимущество асинхронного устройства заключается в том, что имеющиеся в наличии конденсаторы не требуют какого-либо обслуживания, поскольку вся энергия передается от магнитного поля ротора и тока, который вырабатывается в ходе функционирования генератора.

Создаваемый во время работы электрический ток фактически не имеет высших гармоник, что является еще одним значимым преимуществом.

Иных плюсов, кроме названных, асинхронные устройства не имеют, но зато обладают рядом существенных недостатков:

В ходе их функционирования отсутствует возможность по обеспечению номинальных промышленных параметров электрического тока, который вырабатывается генератором.

Высокая степень чувствительности даже к малейшим перепадам параметров рабочих нагрузок.

При превышении параметров допустимых нагрузок на генератор, будет зафиксирована нехватка электричества, после чего подзарядка станет невозможной и процесс генерации будет остановлен. Для устранения этого недостатка, часто используют батареи со значительной емкостью, которые имеют особенность изменять свой объем в зависимости от величины оказываемых нагрузок.

Электрический ток, который вырабатывается асинхронным генератором, подвержен частым изменениям, природа которых неизвестна, она носит случайный характер и никак не объясняется научными доводами.

Невозможность учета и соответствующей компенсации таких изменений объясняет то факт, что подобные устройства не обрели популярность и не получили особого распространения в наиболее серьезных отраслях промышленности или бытовых делах.

В заключение несколько общих советов.

1. Генератор переменного тока является устройством повышенной опасности. Применяйте напряжение 380 В только в случае крайней необходимости, во всех остальных случаях пользуйтесь напряжением 220 В.

2. По требованиям техники безопасности электрогенератор необходимо оборудовать заземлением.

3. Обратите внимание на тепловой режим генератора. Он “не любит” холостого хода. Снизить тепловую нагрузку можно более тщательным подбором емкости возбуждающих конденсаторов.

4. Не ошибитесь с мощностью электрического тока, вырабатываемого генератором. Если при работе трёхфазного генератора используется одна фаза, то её мощность будет составлять 1/3 общей мощности генератора, если две фазы – 2/3 общей мощности генератора.

5. Частоту переменного тока, вырабатываемого генератором, можно косвенно контролировать по выходному напряжению, которое в режиме “холостого хода” должно на 4…6 % превышать промышленное значение 220/380 В.

Aushpitzen › Блог › Асинхронный генератор из асинхронного электродвигателя.

Этот пост буде полезен тому, кто имеет выгодный для него любой (пропановый, метановый, дизельный, бензиновый) ДВС и хочет смастерить аварийную электростанцию, не имея специальной синхронной электромашины — генератора. Того самого, который имеет якорь с явно-выраженными полюсами, обмотки возбуждения на этом якоре и контактные кольца этих обмоток или вращающийся трансформатор для возбуждения этих обмоток якоря. Проще говоря, у Вас ДВС есть, а вот специальной (как Вам кажется) электромашины — генератора нет.
Есть очень простой вариант. Любой мощности…главное, чтобы Ваш ДВС это потянул))). Все настолько просто, что достаточно только текста, чтобы это объяснить, как это сделать из любого АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ, коих полчища продается новых или украдены с предприятий.

Когда — то, в 1998 году мой край погрузился в энергетический кризис. Электричества не было по 8 часов в сутки. Люминисцентные аккумуляторные фонари и электростанции заполнили округу. Ну конеччччно очень много из этого попадало в ремонт. Электростанции, по вине их хозяев часто попадали под внезапно появившееся встречное напряжение из города и требовали перемотки статоров их генераторов и ремонта электроники.
Было отремонтировано уже много таких генераторов, попадались только СИНХРОННЫЕ..

… который имеет якорь с явно-выраженными полюсами, обмотки возбуждения на этом якоре и контактные кольца этих обмоток или вращающийся трансформатор для возбуждения этих обмоток якоря.

И вдруг… привезли какую-то немецкую ДВС — генератор машину мощностью 4,5 КВт. Из вентиляционных щелей генератора несло дегтем, при вскрытии генератора вдруг обнаружился обычный ротор асинхронного двигателя, горелый статор и загадочный ящик с емкостями, соединенными треугольником.

-Что это такое и как это работает ? Было тогда давно недоумение и тупление над горелым трупом статора.

1. Силовая схема : Статор трехфазный, 4 вывода от 3 фаз звезды и нейтрали звезды.
2. 3 емкости соединенные треугольником, подключены к трем выводам звезды статора.
3. К этому-же статору подключены розетки для нагрузки, больше не было ВООБЩЕ НИЧЕГО, НИКАКОЙ ЭЛЕКТРОНИКИ.

Заморочился тогда, был малолетка, подумал что секрет заключен в хитрых обмотках статора. Выпалил под подъездом на костре статор, аккуратно размотал его на кухне пятиэтажки ))), зарисовывая схемы пазов и соединения катушек в фазные зоны. Когда зарисовал весь статор, выпал в осадок…получилась схема обмоток статора… обычного асинхронного электродвигателя на 2980 об/мин.
В мозгу тогда возникли воспоминания, как наша 13 летняя дворовая компания пробралась во двор котельной, толпа крутит ногами якорь крупного брошенного во дворе асинхронника, при замыкании выводов статора — вспышки и искры.
В электротехническом справочнике 1958 года прочитался тогда только короткий абзац по асинхронным генераторам. Все примитивно и смешно.
Не буду томить Вас…
1) Ротор обычного асинхронника имеет остаточный магнетизм, который, при вращении этого ротора другим двигателем значительно улавливается обмотками статора.
2) Соедините три емкости треугольником. Каждая из емкостей должна быть в соотношении 80 Мкф на 5 Квт мощности асинхронника. Это будет система возбуждения реактивной энергией
3) Возьмите асинхронный электромотор, с шестью выводами обмоток статора, соедините его обмотки в звезду, отведите центр звезды для 220 Вольт розеток.
4)Соедините вершины треугольника емкостей с отводами звезды статора асинхронника.
5)Раскрутите этот асинхронник Вашим ДВС, со скоростью выше на 20 — 30 %, чем номинальная частота этого же асинхронника в режиме электродвигателя. ДВС должен быть с автоматическим регулятором оборотов, настроенным впоследствии на эту частоту.
6)Получите генератор.