Генератор из однофазного асинхронного двигателя

Самодельный асинхронный генератор

Для питания бытовых устройств и промышленного оборудования необходим источник электроэнергии. Выработать электрический ток возможно несколькими способами. Но наиболее перспективным и экономически выгодным, на сегодняшний день, является генерация тока электрическими машинами. Самым простым в изготовлении, дешёвым и надёжным в эксплуатации оказался асинхронный генератор, вырабатывающий львиную долю потребляемой нами электроэнергии.

Применение электрических машин этого типа продиктовано их преимуществами. Асинхронные электрогенераторы, в отличие от синхронных генераторов, обеспечивают:

  • более высокую степень надёжности;
  • длительный срок эксплуатации;
  • экономичность;
  • минимальные затраты на обслуживание.

Эти и другие свойства асинхронных генераторов заложены в их конструкции.

Устройство и принцип работы

Главными рабочими частями асинхронного генератора является ротор (подвижная деталь) и статор (неподвижный). На рисунке 1 ротор расположен справа, а статор слева. Обратите внимание на устройство ротора. На нём не видно обмоток из медной проволоки. На самом деле обмотки существуют, но они состоят из алюминиевых стержней короткозамкнутых на кольца, расположенные с двух сторон. На фото стержни видны в виде косых линий.

Конструкция короткозамкнутых обмоток образует, так называемую, «беличью клетку». Пространство внутри этой клетки заполнено стальными пластинами. Если быть точным, то алюминиевые стержни впрессовываются в пазы, проделанные в сердечнике ротора.

Рис. 1. Ротор и статор асинхронного генератора

Асинхронная машина, устройство которой описано выше, называется генератором с короткозамкнутым ротором. Тот, кто знаком с конструкцией асинхронного электродвигателя наверняка заметил схожесть в строении этих двух машин. По сути дела они ничем не отличаются, так как асинхронный генератор и короткозамкнутый электродвигатель практически идентичны, за исключением дополнительных конденсаторов возбуждения, используемых в генераторном режиме.

Ротор расположен на валу, который сидит на подшипниках, зажимаемых с двух сторон крышками. Вся конструкция защищена металлическим корпусом. Генераторы средней и большой мощности требуют охлаждения, поэтому на валу дополнительно устанавливается вентилятор, а сам корпус делают ребристым (см. рис. 2).

Рис. 2. Асинхронный генератор в сборе

Принцип действия

По определению, генератором является устройство, преобразующее механическую энергию в электрический ток. При этом не имеет значения, какая энергия используется для вращения ротора: ветровая, потенциальная энергия воды или же внутренняя энергия, преобразуемая турбиной либо ДВС в механическую.

В результате вращения ротора магнитные силовые линии, образованные остаточной намагниченностью стальных пластин, пересекают обмотки статора. В катушках образуется ЭДС, которая, при подсоединении активных нагрузок, приводит к образованию тока в их цепях.

При этом важно, чтобы синхронная скорость вращения вала немного (примерно на 2 – 10%) превышала синхронную частоту переменного тока (задаётся количеством полюсов статора). Другими словами, необходимо обеспечить асинхронность (несовпадение) частоты вращения на величину скольжения ротора.

Следует заметить, что полученный таким образом ток будет небольшим. Чтобы повысить выходную мощность необходимо увеличить магнитную индукцию. Добиваются повышения КПД устройства путём подключения конденсаторов к выводам катушек статора.

На рисунке 3 изображена схема сварочного асинхронного альтернатора с конденсаторным возбуждением (левая часть схемы). Обратите внимание на то, что конденсаторы возбуждения подключены по схеме треугольника. Правая часть рисунка – собственно схема самого инверторного сварочного аппарата.

Рис. 3. Схема сварочного асинхронного генератора

Существуют и другие, более сложные схемы возбуждения, например, с применением катушек индуктивности и батареи конденсаторов. Пример такой схемы показан на рисунке 4.

Рисунок 4. Схема устройства с индуктивностями

Отличие от синхронного генератора

Главное отличие синхронного альтернатора от асинхронного генератора в конструкции ротора. В синхронной машине ротор состоит из проволочных обмоток. Для создания магнитной индукции используется автономный источник питания (часто дополнительный маломощный генератор постоянного тока, расположенный на одной оси с ротором).

Преимущество синхронного генератора в том, что он генерирует более качественный ток и легко синхронизируется с другими альтернаторами подобного типа. Однако синхронные альтернаторы более чувствительны к перегрузкам и КЗ. Они дороже от своих асинхронных собратьев и требовательнее в обслуживании – необходимо следить за состоянием щёток.

Коэффициент гармоник или клирфактор асинхронных генераторов ниже, чем у синхронных альтернаторов. То есть они вырабатывают практически чистую электроэнергию. На таких токах устойчивее работают:

  • ИБП;
  • регулируемые зарядные устройства;
  • современные телевизионные приёмники.

Асинхронные генераторы обеспечивают уверенный запуск электромоторов, требующих больших пусковых токов. По этому показателю они, фактически, не уступают синхронным машинам. У них меньше реактивных нагрузок, что положительно сказывается на тепловом режиме, так как меньше энергии расходуется на реактивную мощность. У асинхронного альтернатора лучшая стабильность выходной частоты на разных скоростях вращения ротора.

Классификация

Генераторы короткозамкнутого типа получили наибольшее распространение, ввиду простоты их конструкции. Однако существуют и другие типы асинхронных машин: альтернаторы с фазным ротором и устройства, с применением постоянных магнитов, образующих цепь возбуждения.

На рисунке 5 для сравнения показаны два типа генераторов: слева на базе асинхронного двигателя с короткозамкнутым ротором, а справа – асинхронная машина на базе АД с фазным ротором. Даже при беглом взгляде на схематические изображения видно усложнённую конструкцию фазного ротора. Привлекает внимание наличие контактных колец (4) и механизма щёткодержателей (5). Цифрой 3 обозначены пазы для проволочной обмотки, на которую необходимо подать ток для её возбуждения.

Рис. 5. Типы асинхронных генераторов

Наличие обмоток возбуждения в роторе асинхронного генератора повышает качество генерируемого электрического тока, однако при этом теряются такие достоинства как простота и надёжность. Поэтому такие устройства используются в качестве источника автономного питания только в тех сферах, где без них трудно обойтись. Постоянные магниты в роторах применяют в основном для производства маломощных генераторов.

Область применения

Наиболее часто встречается применение генераторных установок с короткозамкнутым ротором. Они недорогие, практически не нуждаются в обслуживании. Устройства, оборудованные пусковыми конденсаторами, обладают приличными показателями КПД.

Асинхронные альтернаторы часто используют в качестве автономного или резервного источника питания. С ними работают переносные бензиновые генераторы, их используют для мощных мобильных и стационарных дизельных генераторов.

Альтернаторы с трёхфазной обмоткой уверенно запускают трехфазный электродвигатель, поэтому часто используются в промышленных энергоустановках. Они также могут питать оборудование в однофазных сетях. Двухфазный режим позволяет экономить топливо ДВС, так как незадействованные обмотки находятся в режиме холостого хода.

Сфера применения довольно обширная:

  • транспортная промышленность;
  • сельское хозяйство;
  • бытовая сфера;
  • медицинские учреждения;

Асинхронные альтернаторы удобны для сооружения локальных ветровых и гидравлических электростанций.

Асинхронный генератор своими руками

Оговоримся сразу: речь пойдёт не об изготовлении генератора с нуля, а о переделывании асинхронного двигателя в альтернатор. Некоторые умельцы используют готовый статор от мотора и экспериментируют с ротором. Идея состоит в том, чтобы с помощью неодимовых магнитов сделать полюса ротора. Примерно так может выглядеть заготовка с наклеенными магнитиками (см. рис. 6):

Рис. 6. Заготовка с наклеенными магнитами

Вы наклеиваете магниты на специально выточенную заготовку, посаженную на валу электродвигателя, соблюдая их полярность и угол сдвига. Для этого потребуется не менее 128 магнитиков.

Готовую конструкцию необходимо подогнать к статору и при этом обеспечить минимальный зазор между зубцами и магнитными полюсами изготовленного ротора. Поскольку магнитики плоские, придётся их шлифовать или обтачивать, при этом постоянно охлаждая конструкцию, так как неодим теряет свои магнитные свойства при высокой температуре. Если вы сделаете всё правильно – генератор заработает.

Проблема состоит в том, что в кустарных условиях очень сложно изготовить идеальный ротор. Но если у вас есть токарный станок и вы готовы потратить несколько недель на подгонку и доработки – можете поэкспериментировать.

Я предлагаю более практичный вариант – превращение асинхронного двигателя в генератор (смотрите видео ниже). Для этого вам понадобится электромотор с подходящей мощностью и приемлемой частотой вращения ротора. Мощность двигателя должна быть минимум на 50% выше от требуемой мощности альтернатора. Если такой электромотор есть в вашем распоряжении – приступайте к переработке. В противном случае лучше купить готовый генератор.

Для переработки вам потребуется 3 конденсатора марки КБГ-МН, МБГО, МБГТ (можно брать другие марки, но не электролитические). Конденсаторы подбирайте на напряжение не менее 600 В (для трёхфазного двигателя). Реактивная мощность генератора Q связанная с емкостью конденсатора следующей зависимостью: Q = 0,314·U 2 ·C·10 -6 .

При увеличении нагрузки возрастает реактивная мощность, а значит, для поддержания стабильного напряжения U необходимо увеличивать ёмкость конденсаторов, добавляя новые ёмкости путём коммутации.

Видео: делаем асинхронный генератор из однофазного двигателя – Часть 1
https://www.youtube.com/watch?v=ZQO5S9F72CQ

Часть 2
https://www.youtube.com/watch?v=nDCdADUZghs

Часть 3
https://www.youtube.com/watch?v=6M_w1b2xyM8

Часть 4
https://www.youtube.com/watch?v=CONHg7p-IYE

Часть 5
https://www.youtube.com/watch?v=z2YSqVh1vM8

Часть 6
https://www.youtube.com/watch?v=FNU83kOeSbA

Для упрощения подбора конденсаторов воспользуйтесь таблицей:

Мощность альтернатора (кВт-А) Ёмкость конденсатора (мкФ) на холостом ходу Ёмкость конденсатора (мкФ) при средней нагрузке Ёмкость конденсатора (мкФ) при полной нагрузке
2 28 36 60
3,5 45 56 100
5 60 75 138

На практике, обычно выбирают среднее значение, предполагая, что нагрузка не будет максимальной.

Подобрав параметры конденсаторов, подключите их к выводам обмоток статора так, как показано на схеме (рис. 7). Генератор готов.

Читайте также  Почему искрит двигатель пылесоса?

Рис. 7. Схема подключения конденсаторов

Советы по эксплуатации

Асинхронный генератор не требует особого ухода. Его обслуживание заключается в контроле состояния подшипников. На номинальных режимах устройство способно работать годами без вмешательства оператора.

Слабое звено – конденсаторы. Они могут выходить из строя, особенно тогда, когда их номиналы неправильно подобраны.

При работе генератор нагревается. Если вы часто подключаете повышенные нагрузки – следите за температурой устройства или позаботьтесь о дополнительном охлаждении.

Aushpitzen › Блог › Асинхронный генератор из асинхронного электродвигателя.

Этот пост буде полезен тому, кто имеет выгодный для него любой (пропановый, метановый, дизельный, бензиновый) ДВС и хочет смастерить аварийную электростанцию, не имея специальной синхронной электромашины — генератора. Того самого, который имеет якорь с явно-выраженными полюсами, обмотки возбуждения на этом якоре и контактные кольца этих обмоток или вращающийся трансформатор для возбуждения этих обмоток якоря. Проще говоря, у Вас ДВС есть, а вот специальной (как Вам кажется) электромашины — генератора нет.
Есть очень простой вариант. Любой мощности…главное, чтобы Ваш ДВС это потянул))). Все настолько просто, что достаточно только текста, чтобы это объяснить, как это сделать из любого АСИНХРОННОГО ЭЛЕКТРОДВИГАТЕЛЯ, коих полчища продается новых или украдены с предприятий.

Когда — то, в 1998 году мой край погрузился в энергетический кризис. Электричества не было по 8 часов в сутки. Люминисцентные аккумуляторные фонари и электростанции заполнили округу. Ну конеччччно очень много из этого попадало в ремонт. Электростанции, по вине их хозяев часто попадали под внезапно появившееся встречное напряжение из города и требовали перемотки статоров их генераторов и ремонта электроники.
Было отремонтировано уже много таких генераторов, попадались только СИНХРОННЫЕ..

… который имеет якорь с явно-выраженными полюсами, обмотки возбуждения на этом якоре и контактные кольца этих обмоток или вращающийся трансформатор для возбуждения этих обмоток якоря.

И вдруг… привезли какую-то немецкую ДВС — генератор машину мощностью 4,5 КВт. Из вентиляционных щелей генератора несло дегтем, при вскрытии генератора вдруг обнаружился обычный ротор асинхронного двигателя, горелый статор и загадочный ящик с емкостями, соединенными треугольником.

-Что это такое и как это работает ? Было тогда давно недоумение и тупление над горелым трупом статора.

1. Силовая схема : Статор трехфазный, 4 вывода от 3 фаз звезды и нейтрали звезды.
2. 3 емкости соединенные треугольником, подключены к трем выводам звезды статора.
3. К этому-же статору подключены розетки для нагрузки, больше не было ВООБЩЕ НИЧЕГО, НИКАКОЙ ЭЛЕКТРОНИКИ.

Заморочился тогда, был малолетка, подумал что секрет заключен в хитрых обмотках статора. Выпалил под подъездом на костре статор, аккуратно размотал его на кухне пятиэтажки ))), зарисовывая схемы пазов и соединения катушек в фазные зоны. Когда зарисовал весь статор, выпал в осадок…получилась схема обмоток статора… обычного асинхронного электродвигателя на 2980 об/мин.
В мозгу тогда возникли воспоминания, как наша 13 летняя дворовая компания пробралась во двор котельной, толпа крутит ногами якорь крупного брошенного во дворе асинхронника, при замыкании выводов статора — вспышки и искры.
В электротехническом справочнике 1958 года прочитался тогда только короткий абзац по асинхронным генераторам. Все примитивно и смешно.
Не буду томить Вас…
1) Ротор обычного асинхронника имеет остаточный магнетизм, который, при вращении этого ротора другим двигателем значительно улавливается обмотками статора.
2) Соедините три емкости треугольником. Каждая из емкостей должна быть в соотношении 80 Мкф на 5 Квт мощности асинхронника. Это будет система возбуждения реактивной энергией
3) Возьмите асинхронный электромотор, с шестью выводами обмоток статора, соедините его обмотки в звезду, отведите центр звезды для 220 Вольт розеток.
4)Соедините вершины треугольника емкостей с отводами звезды статора асинхронника.
5)Раскрутите этот асинхронник Вашим ДВС, со скоростью выше на 20 — 30 %, чем номинальная частота этого же асинхронника в режиме электродвигателя. ДВС должен быть с автоматическим регулятором оборотов, настроенным впоследствии на эту частоту.
6)Получите генератор.

Как самому переделать генератор из асинхронного двигателя?

Данная задача требует выполнения ряда манипуляций, которые должны сопровождаться четким пониманием принципов и режимов функционирования такого оборудования.

Что собой представляет и как работает

Эл двигатель асинхронного типа – это машина, в которой происходит трансформация электрической энергии в механическую и тепловую. Такой переход становится возможным благодаря явлению электромагнитной индукции, которая возникает между обмотками статора и ротора. Особенностью асинхронных двигателей является тот факт, что частота вращения этих двух ключевых его элементов отличается.

Конструктивные особенности типичного эл двигателя можно видеть на иллюстрации. И статор, и ротор представляют собой соосные круглого сечения объекты, изготавливаются путем набора достаточного количества пластин из специальной стали. Пластины статора имеют пазы на внутренней части кольца и при совмещении образуют продольные канавки, в которые наматывается обмотка из медной проволоки. Для ротора, ее роль играют алюминиевые прутки, они также вставляются в пазы сердечника, но с обеих сторон замыкаются стопорными пластинами.

Во время подачи напряжения на обмотки статора, на них возникает и начинает вращаться электромагнитное поле. В связи с тем, что частота вращения ротора заведомо меньше, между обмотками наводится ЭДС и центральный вал начинает двигаться. Не синхронность частот связана не только с теоретическими основами процесса, но и с фактическим трением опорных подшипников вала, оно будет его несколько тормозить относительно поля статора.

Что такое электрический генератор?

Генератор представляет собой эл машину, преобразовывающую механическую и тепловую энергии в электрическую. С этой точки зрения он является устройством прямо противоположным по принципу действия и режиму функционирования к асинхронному двигателю. Более того, наиболее распространенным типом электрогенераторов являются индукционные.

Как мы помним из выше описанной теории, такое становится возможным только при разности оборотов магнитных полей статора и ротора. Из это следует один закономерный вывод (учитывая также принцип обратимости, упомянутый вначале статьи) – теоретически возможно сделать генератор из асинхронника, кроме того, это задача, решаемая самостоятельно за счет перемотки.

Работа двигателя в режиме генератора

Любой асинхронный электрогенератор используется в качестве некоего трансформатора, где механическая энергия от вращения вала двигателя, преобразуется в переменный ток. Такое становится возможным тогда, когда его скорость становится выше синхронной (порядка 1500 об/мин). Классическую схему переделки и подключения двигателя в режиме электрогенератора с выработкой трехфазного тока можно легко собрать своими руками:

Чтобы достичь такой стартовой частоты вращения, необходимо приложить довольно большой крутящий момент (например, за счет подключения двигателя внутреннего сгорания в бензогенераторе или крыльчатки в ветряке). Как только частота вращения достигает значения синхронной, начинает действовать конденсаторная батарея, создающая емкостный ток. За счет этого происходит самовозбуждение обмоток статора и выработка электрического тока (режим генерирования).

Необходимым условием устойчивой работы такого электрогенератора с промышленной частотой сети 50 Гц, является соответствие его частотных характеристик:

  1. Скорость его вращения должна превышать асинхронную (частоту работы самого двигателя) на процент скольжения (от 2 до 10%),
  2. Значение скорости вращения генератора должно соответствовать синхронной скорости.

Как самостоятельно собрать асинхронный генератор?

Обладая полученными знаниями, смекалкой и умением работать с информацией, можно своими руками собрать/переделать работоспособный генератор из двигателя. Для этого необходимо совершить точные действия следующей последовательности:

  1. Вычисляется реальная (асинхронная) частота вращения двигателя, который планируется применить в качестве электрогенератора. Для определения оборотов на подключенном к сети агрегате можно использовать тахограф,
  2. Определяется синхронная частота двигателя, которая одновременно будет асинхронной для генератора. Здесь учитывается величина скольжения (2-10%). Допустим, измерения показали скорость вращения на уровне 1450 об/мин. Требуемая частота работы электрогенератора будет составлять:

nГЕН = (1,02…1,1)nДВ= (1,02…1,1)·1450 = 1479…1595 об/мин,

  1. Подбор конденсатора необходимой емкости (используются стандартные сравнительные таблицы данных).

На этом можно и поставить точку, но если требуется напряжение однофазной сети 220В, то режим функционирования такого устройства потребует внедрения в приведенную ранее схему понижающего трансформатора.

Виды генераторов на базе двигателей

Покупка штатного готового эл генератора – удовольствие отнюдь не из дешевых и вряд ли по карману практическому большинству наших сограждан. Прекрасной альтернативой может послужить самодельный генератор, его можно собрать при достаточных познаниях в области электротехники и слесарного дела. Собранное устройство может успешно использоваться в качестве:

  1. Электрогенератора с самозапиткой. Пользователь может своими руками получить устройство для выработки электроэнергии с длительным периодом действия вследствие самостоятельной подпитки,
  2. Ветрогенератора. В качестве движителя, необходимого для пуска двигателя, используется ветряк, который вращается под воздействием ветра,
  3. Генератора на неодимовых магнитах,
  4. Трехфазного бензогенератора,
  5. Однофазного маломощного генератора на двигателях электроприборов и т. д.

Переделка своими руками стандартного мотора в действующее генерирующее устройство – занятие увлекательное и очевидно экономящее бюджет. Таким образом можно переделать обычный ветряк, соединив его с двигателем для автономной выработки энергии.

Читайте также  Назначение интеркулера в дизельном двигателе

Самодельный электрогенератор из асинхронного двигателя

  1. Конструкция и принцип действия асинхронного двигателя
  2. Конструкция и принцип действия электрогенератора
  3. От электродвигателя к электрогенератору
  4. Смысл переделки
  5. Что нужно для переделки?
  6. От теории к практике
  7. Как соединять?

Энергия электрического тока, входя внутрь асинхронного двигателя, легко переходит в энергию движения на выходе из него. А что делать, если требуется обратное превращение? В таком случае можно соорудить самодельный генератор из асинхронного двигателя. Только функционировать будет он в другом режиме: за счет совершения механической работы начнет вырабатываться электричество. Идеальное решение – перевоплощение в ветрогенератор – источник бесплатной энергии.

Конструкция и принцип действия асинхронного двигателя

Экспериментально доказано, что магнитное поле создается переменным электрическим полем. На этом и основан принцип действия асинхронного двигателя, конструкция которого включает в себя:

  • Корпус – это то, что мы видим снаружи;
  • Статор – неподвижная часть электродвигателя;
  • Ротор – элемент, приводящийся в движение.

У статора главный элемент – обмотка, на которую подается переменное напряжение (принцип действия не на постоянных магнитах, а на магнитном поле, повреждающемся переменным электрическим). В роли ротора выступает цилиндр с пазами, в которые уложена намотка. Но поступающий на нее ток имеет противоположное направление. В результате образуется два переменных электрических поля. Каждое из них создает по магнитному полю, которые начинают взаимодействовать между собой. Но устройство статора таково, что он не может двигаться. Поэтому результатом взаимодействия двух магнитных полей становится вращение ротора.

Конструкция и принцип действия электрогенератора

Опытами подтверждается и то, что магнитное поле создает переменное электрическое поле. Ниже показана схема, которая доступно иллюстрирует принцип действия генератора.

Если металлическую рамку поместить и повращать в магнитном поле, то пронизывающий ее магнитный поток начнет меняться. Это приведет к образованию индукционного тока внутри рамки. Если соединить концы с потребителем тока, к примеру, с электрической лампой, то можно наблюдать ее свечение. Это говорит о том, что механическая энергия, затрачиваемая на вращение рамки внутри магнитного поля, превратилась в электрическую энергию, которая помогла загореться лампе.

Конструктивно электрогенератор состоит их тех же частей, что и электродвигатель: из корпуса, статора и ротора. Разница заключается лишь в принципе действия. Не ротор приводится в движение от магнитного поля, создаваемого электрическим в статорной намотке. А появляется электрический ток в обмотке статора за счет изменения магнитного потока, пронизывающего ее, благодаря принудительному вращению ротора.

От электродвигателя к электрогенератору

Жизнь человека сегодня немыслима без электричества. Поэтому всюду строятся электростанции, преобразующие энергию воды, ветра и атомных ядер в электрическую энергию. Она стала универсальной, потому что ее можно преобразовать в энергию движения, тепла и света. Это стало причиной массового распространения электродвигателей. Электрогенераторы менее популярны, потому что электричеством государство снабжает централизованно. Но все же иногда случается, что электроэнергия отсутствует, и получить ее неоткуда. В таком случае вам поможет генератор из асинхронного двигателя.

Мы уже говорили выше, что конструктивно электрогенератор и двигатель похожи друг на друга. Отсюда возникает вопрос: нельзя ли это чудо техники использовать в качестве источника как механической, так и электрической энергии? Оказывается, можно. И мы расскажем, как своими руками переделать мотор в источник тока.

Смысл переделки

Если понадобился электрогенератор, зачем его делать из двигателя, если можно купить новое оборудование? Однако качественная электротехника – удовольствие не из дешевых. И если у вас есть не использующийся в данный момент мотор, почему бы ему не сослужить добрую службу? Путем простых манипуляций и с минимальными затратами вы получите отличный источник тока, который сможет питать приборы, обладающие активной нагрузкой. К таким относятся компьютерная, электронная и радиотехника, обыкновенные лампы, обогреватели и сварочные преобразователи.

Но экономия – не единственный плюс. Преимущества электрического генератора тока, сооруженного из асинхронного электродвигателя:

  • Конструкция проще, чем у синхронного аналога;
  • Максимальная защита внутренностей от влаги и пыли;
  • Высокая устойчивость к перегрузкам и короткому замыканию;
  • Почти полное отсутствие нелинейных искажений;
  • Клирфактор (величина, выражающая неравномерность вращения ротора) не более 2%;
  • Обмотки во время работы статичны, поэтому долго не изнашиваются, увеличивая эксплуатационный срок;
  • Выработанное электричество сразу обладает напряжением 220В или 380В в зависимости от того, какой двигатель вы решили переделать: однофазный или трехфазный. Это значит, что к генератору можно напрямую подключать потребителей тока, без инверторов.

Даже если электрогенератор не сможет полностью обеспечить ваши нужды, его можно использовать совместно с централизованным электроснабжением. В этом случае речь снова идет об экономии: платить придется меньше. Выгода будет выражаться в разности, полученной путем вычитания выработанного электричества из суммы потребленной электроэнергии.

Что нужно для переделки?

Чтобы своими руками смастерить генератор из асинхронного двигателя, нужно сначала понять, что мешает преобразованию электрической энергии из механической. Напомним, что для образования индукционного тока необходимо наличие изменяющегося со временем магнитного поля. При работе оборудования в режиме мотора оно создается и в статоре, и в роторе за счет питания от сети. Если же перевести технику в режим генератора, окажется, что магнитного поля нет совсем. Откуда же ему взяться?

После работы оборудования в режиме двигателя ротор сохраняет остаточную намагниченность. Именно она от принудительного вращения вызывает индукционный ток в статоре. А для того чтобы магнитное поле сохранялось, потребуется установка конденсаторов, которые обладает током емкостным. Именно он будет поддерживать намагниченность за счет самовозбуждения.

С вопросом, откуда взялось исходное магнитное поле, мы разобрались. Но как приводить в движение ротор? Конечно, если вы раскрутите его своими руками, можно будет питать небольшую лампочку. Но вряд ли результат удовлетворит вас. Идеальное решение – превращение мотора в ветрогенератор, или ветряк.

Так называют устройство, преобразующее кинетическую энергию ветра в механическую, а затем – в электрическую. Ветрогенераторы снабжены лопастями, которые при встрече с ветром приводятся в движение. Вращаться они могут как в вертикальной, так и в горизонтальной плоскости.

От теории к практике

Соорудим ветрогенератор из мотора своими руками. Для простого понимания к инструкции прилагаются схемы и видео. Вам понадобятся:

  • Устройство для передачи энергии ветра к ротору;
  • Конденсаторы на каждую обмотку статора.

Сформулировать правило, по которому бы вы могли с первого раза подобрать устройство для улавливания ветра, сложно. Тут нужно руководствоваться тем, что при работе техники в генераторном режиме частота вращения ротора должна быть выше на 10%, чем при работе в качестве двигателя. Учитывать нужно частоту не номинальную, а холостого хода. Пример: номинальная частота 1000 оборотов, а в холостом режиме – 1400. Тогда для выработки тока понадобится частота, равная примерно 1540 оборотам в минуту.

Подбор конденсаторов по емкости производится по формуле:

C – искомая емкость. Q – скорость вращения ротора в оборотах в минуту. П – число «пи», равное 3,14. f – фазовая частота (постоянная величина для России, равная 50 Герцам). U – напряжение в сети (220, если одна фаза, и 380, если три).

Пример расчета: трехфазный ротор вращается со скоростью 2500 оборотов в минуту. Тогда C = 2500/(2*3,14*50*380*380)=56 мкФ.

Внимание! Не подбирайте емкость больше расчетной величины. Иначе будет высоким активное сопротивление, что приведет к перегреву генератора. Это может произойти и тогда, когда устройство будет запускаться без нагрузки. В таком случае будет полезно уменьшить емкость конденсатора. Чтобы это было просто сделать своими руками, ставьте емкость не цельную, а сборную. Например, 60 мкФ можно составить из 6 штук по 10 мкФ, соединенных параллельно друг другу.

Как соединять?

Рассмотрим, как сделать генератор из асинхронного двигателя, на примере трехфазного мотора:

  1. Соедините вал с устройством, приводящим во вращение ротор за счет энергии ветра;
  2. Подключите конденсаторы по схеме треугольник, вершины которого соедините с концами звезды или вершинами треугольника статора (зависит от типа соединения намоток);
  3. Если на выходе требуется напряжение 220 Вольт, соедините статорные намотки в треугольник (конец первой обмотки – с началом второй, конец второй – с началом третьей, конец третьей – с началом первой);
  4. Если вам нужно запитать приборы от 380 Вольт, то для соединения статорных обмоток подойдет схема «звезда». Для этого соедините начало всех намоток вместе, а концы подключите к соответствующим емкостям.

Пошаговая инструкция о том, как сделать своими руками однофазный ветрогенератор малой мощности:

  1. Вытащите из старой стиральной машины электродвигатель;
  2. Определите рабочую намотку и подключите параллельно ей конденсатор;
  3. Обеспечьте вращение ротора за счет энергии ветра.

Получится ветряк, как на видео, и он выдаст 220 Вольт.

Для электроприборов, питающихся от постоянного тока, дополнительно потребуется установка выпрямителя. А если вы заинтересованы в контроле параметров источника питания, установите на выходе амперметр и вольтметр.

Совет! Ветрогенераторы в связи с отсутствием постоянного ветра могут иногда прекращать работу или работать не в полную силу. Поэтому удобно организовать собственную электростанцию. Для этого ветряк подключают во время ветряной погоды к аккумулятору. Накопленную электроэнергию можно будет использовать во время штиля.

Электродвигатель – это устройство, выступающее в качестве преобразователя энергии и работающее в режиме получения механической энергии из электрической. Путем несложных превращений без использования постоянного магнита, но благодаря остаточной намагниченности, мотор начинает работать в качестве источника питания. Это два взаимообратных явления, помогающие вам экономить: не нужно покупать ветрогенератор, если без дела валяется электрический двигатель. Смотрите видео и учитесь.

Читайте также  Двигатель для дождевальной машины

Делаем генератор из асинхронного электродвигателя своими силами в домашних условиях

Способ 1

В Интернете нашел статью о том, как переделать генератор автомобиля на генератор с постоянными магнитами. Можно ли использовать этот принцип и переделать генератор своими руками из асинхронного электродвигателя? Возможно, что будут большие потери энергии, не такое расположение катушек.

Двигатель асинхронного типа у меня на напряжение 110 вольт, обороты – 1450, 2,2 ампера, однофазный. При помощи емкостей я не берусь делать самодельный генератор, так как будут большие потери.

Предлагается пользоваться простыми двигателями по такой схеме.

Если изменять двигатель или генератор с магнитами округлой формы от динамиков, то надо их устанавливать в крабы? Крабы – это две металлические детали, стоят на якоре снаружи катушек возбуждения.

Если магниты надевать на вал, то вал будет шунтировать магнитные силовые линии. Как тогда будет возбуждение? Катушка тоже расположена на валу из металла.

Если поменять подсоединение обмоток и сделать параллельное соединение, разогнать до оборотов выше нормальных значений, то получается 70 вольт. Где взять механизм для таких оборотов? Если перематывать его на уменьшение оборотов и ниже питание, то слишком упадет мощность.

Двигатель асинхронного типа с замкнутым ротором – это железо, которое залито алюминием. Можно взять самодельный генератор от автомобиля, у которого напряжение 14 вольт, сила тока 80 ампер. Это неплохие данные. Двигатель с коллектором на переменный ток от пылесоса или стиральной машины можно применить для генератора. На статор установить подмагничивание, напряжение постоянного тока снимать со щеток. По наибольшему ЭДС поменять угол щеток. Коэффициент полезного действия стремится к нулю. Но, лучше, чем генератор синхронного типа, не изобрели.

Решил испытать самодельный генератор. Однофазный асинхронный мотор от стиралки малютки крутил дрелью. Подключил к нему емкость 4 мкФ, получилось 5 вольт 30 герц и ток 1,5 миллиампера на короткое замыкание.

Не каждый электромотор можно использовать в качестве генератора таким методом. Есть моторы со стальным ротором, имеющие малую степень намагниченности на остатке.

Необходимо знать разницу между преобразованием электрической энергии и генерацией энергии. Преобразовать 1 фазу в 3 можно несколькими способами. Один из них – это механическая энергия. Если электростанцию отсоединить от розетки, то пропадает все преобразование.

Откуда возьмется движение провода с повышением скорости, ясно. Откуда магнитное поле будет для получения ЭДС в проводе – не понятно.

Объяснить это просто. Из-за механизма магнетизма, который остался, образуется ЭДС в якоре. Возникает ток в статорной обмотке, который замкнут на емкости.

Ток возник, значит, дает усиление на электродвижущую силу на катушках роторного вала. Появившийся ток дает усиление электродвижущей силы. Электроток статорный образует электродвижущую силу намного больше. Это идет до установления равновесия статорных магнитных потоков и ротора, а также дополнительные потери.

Размер конденсаторов рассчитывают так, что на выводах напряжение достигает номинального значения. Если оно маленькое, то снижают емкость, то повышают. Были сомнения по поводу старых моторов, которые якобы не возбуждаются. После разгона ротора мотора или генератора надо ткнуть быстро в любую фазу малым количеством вольт. Все придет в нормальное состояние. Зарядить конденсатор до напряжения равному половину емкости. Включение производить выключателем с тремя полюсами. Это относится с 3-фазному мотору. Такая схема используется для генераторов вагонов пассажирского транспорта, так как у них ротор короткозамкнутый.

Способ 2

Самодельный генератор сделать можно и по-другому. Статор имеет хитрую конструкцию (имеет специальное конструкторское решение), имеется возможность регулировки напряжения выхода. Я сделал генератор своими руками такого вида на строительстве. Двигатель брал мощностью 7 кВт на 900 оборотов. Обмотку возбуждения я подключил по схеме треугольника на 220 В. Запустил его на 1600 оборотов, конденсаторы были на 3 на 120 мкФ. Включались они контактором с тремя полюсами. Генератор действовал как выпрямитель с тремя фазами. С этого выпрямителя питалась электрическая дрель с коллектором на 1000 ватт, и пила дисковая на 2200 ватт, 220 В, болгарка 2000 ватт.

Приходилось изготавливать систему мягкого пуска, другой резистор с закороченной фазой через 3 секунды.

Для моторов с коллекторами это неправильно. Если в два раза повысить вращающую частоту, то уменьшится и емкость.

Также повысится и частота. Схема емкостей отключалась в автоматическом режиме, чтобы не использовать тор реактивности, не расходовать горючее.

Во время работы надо нажать на статор контактора. Три фазы разобрал их по ненужности. Причина кроется в высоком зазоре и увеличенном рассеивании поля полюсов.

Специальные механизмы с двойной клеткой для белки и косыми глазами для белки. Все-таки я получил с моторчика стиралки 100 вольт и частоту 30 герц, лампа на 15 ватт не хочет гореть. Очень слабая мощность. Надо мотор брать сильнее, или конденсаторов больше ставить.

Под вагонами используется генератор с ротором короткозамкнутым. Его механизм приходит от редуктора и на ременную передачу. Обороты вращения 300 оборотов. Он находится как дополнительный генератор нагрузки.

Способ 3

Можно сконструировать самодельный генератор, электростанцию на бензине.

Вместо генератора использовать 3-фазный асинхронный мотор на 1,5 кВт на 900 оборотов. Электродвигатель итальянский, подключаться может треугольником и звездой. Сначала я поставил мотор на основание с мотором постоянного тока, присоединил к муфте. Стал крутить двигатель на 1100 оборотов. Появилось напряжение 250 вольт на фазах. Подключил лампочку на 1000 ватт, напряжение сразу упало до 150 вольт. Наверное, это от фазного перекоса. На каждую фазу надо включать отдельную нагрузку. Три лампочки по 300 ватт не смогут снизить напряжение до 200 вольт, теоретически. Можно конденсатор поставить больше.

Обороты двигателя надо делать больше, при нагрузке не снижать, тогда питание сети будет постоянным.

Необходима значительная мощность, автогенератор такую мощность не даст. Если перемотать большой камазовский, то с него не выйдет 220 В, так как магнитопровод будет перенасыщен. Он был сконструирован на 24 вольта.

Сегодня собирался пробовать подсоединить нагрузку через 3-фазный блок питания (выпрямитель). В гаражах свет отключили, не получилось. В городе энергетиков систематически отключают свет, поэтому надо делать источник постоянного питания электричеством. Для электросварки есть навеска, подцепляется к трактору. Для подключения электрического инструмента нужен постоянный источник напряжения на 220 В. Была мысль сконструировать самодельный генератор своими руками, и инвертор к нему, но, на аккумуляторных батареях не долго можно проработать.

Недавно включили электричество. Подключал двигатель асинхронный из Италии. Поставил его с мотором бензопилы на раму, скрутил вместе валы, поставил муфту резиновую. Катушки соединил по схеме звезды, конденсаторы треугольником, по 15 мкФ. Когда запустил моторы, то на выходе питания не получилось. Присоединял конденсатор, заряженный к фазам, напряжение появилось. Свою мощность в 1,5 кВт двигатель выдал. При этом питающее напряжение снизилось до 240 вольт, на холостых оборотах было 255 вольт. Шлифмашинка от него нормально работала на 950 ватт.

Пробовал повысить обороты двигателя, но не получается возбуждение. После контакта конденсатора с фазой напряжение возникает сразу. Буду пробовать ставить другой двигатель.

Какие конструкции систем за границей производятся для электростанций? На 1-фазных понятно, что ротор владеет обмоткой, перекоса фаз нет, потому что одна фаза. В 3-фазных имеется система, которая дает регулировку мощности при подсоединении к ней моторов с наибольшей нагрузкой. Еще можно подсоединить инвертор для сварки.

В выходные хотел сделать самодельный генератор своими руками с подключением асинхронного двигателя. Удачной попыткой сделать самодельный генератор оказалось подключение старого двигателя с корпусом из чугуна на 1 кВт и на 950 оборотов. Мотор возбуждается нормально, с одной емкостью на 40 мкФ. А я установил три емкости и подключил их звездой. Этого хватило для запуска электродрели, болгарки. Хотел, чтобы получилась выдача напряжения на одной фазе. Для этого подключал три диода, полумост. Сгорели лампы люминесцентные для освещения, и подгорели пакетники в гараже. Буду наматывать трансформатор на три фазы.

Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта , буду рад если вы найдете на моем сайте еще что-нибудь полезное.