Давление наддува турбины дизельного двигателя

Как самому проверить турбину дизельного двигателя у легковых авто

Прежде чем говорить о том, как проверить турбину дизельного двигателя нужно прояснить некоторые базовые понятия. Разберемся что такое наддув, турбонаддув, как в принципе устроен турбокомпрессор. После этого перейдем к проверке исправности его работы.

О наддуве простыми словами

Часто про наддув говорят: «Это турбина загоняет в движок больше воздуха. Возрастает мощность и КПД». Совсем не так. Задача наддува — не повышение КПД, а повышение мощности и крутящего момента при том же объеме двигателя.

Наддув — это самое радикальное средство повышения мощности, которое достигается нагнетанием в цилиндры дизеля дополнительного воздуха, и соответствующем увеличении подачи топлива в том же диапазоне оборотов. Воздух без топлива не горит, и не увеличивает ни мощность, ни КПД, который расти не обязан, и может даже снижаться.

Итак, наддув это: воздух + топливо = мощность. Турбина воздух не гонит, его подает компрессор. Системы наддува различаются в частности по типу привода компрессора; Различают три вида наддува:

  • механический;
  • электрический;
  • турбонаддув.

На легковых автомобилях самый распространенный — турбонаддув. Его отличие от первых двух в том, что для привода компрессора он использует бросовую энергию отработавших газов. Механическая и электрическая системы для своих нужд отбирают полезную энергию мотора.

Принцип действия турбокомпрессора

Турбокомпрессор состоит из турбины и компрессора. Колесо турбины и крыльчатка компрессора сидят на одном валу в разных корпусах. Колесо турбины имеет лопатки. На них воздействует поток выпускных газов, и раскручивает колесо.

Через вал приводится в действие колесо компрессора, который нагнетает воздух в цилиндры двигателя. Вал турбокомпрессора установлен в подшипниках, к которым по главной масляной магистрали дизеля подается масло.

Скорость вращения вала турбокомпрессора не пропорциональна скорости вращения коленчатого вала двигателя. Она зависит от давления выхлопных газов.

Двигатель может работать на малых оборотах, но с большой нагрузкой. При этом компрессор будет подавать большое количество воздуха. Пропорционально массе воздуха подается топливо и мощность дизеля возрастает.

Геометрия

В современных автомобильных турбинах появилось такое понятие как «геометрия» — механизм, управляющий интенсивностью наддува. Посредством поворота специальных лопаток меняется направление потока выхлопных газов. На рабочее колесо попадает меньшее или большее их количество, меняется скорость вращения турбины количество нагнетаемого воздуха. Управляет этими элементами вакуумный клапан, или актуатор.

Примером таких машин могут быть Рено Меган 1.5 л., Ниссан Патфайндер 2.5 л. Система позволяет более тонко регулировать количество воздуха, получать высокий крутящий момент уже на низких оборотах.

Лопатки — подвижные и чувствительные элементы, которые работают в тяжелых условиях и постоянно омываются раскаленными газами, содержащими сажу. Они все время в движении и со временем изнашиваются: в их поворотных сопряжениях появляются люфты. Некогда точный механизм напоминает двери с разболтанными петлями — он уже не пригоден для регулировки.

При появлении большого количества нагара лопатки заклинивают и перестают двигаться. Остановившись в одном положении, система не может работать корректно.

Этот вариант неисправности следует учитывать при проведении диагностики. Может подвести вакуумный клапан: если его герметичность нарушена, он не сможет управлять геометрией.

На Nissan Pathfinder устанавливается электронный актуатор. В нем применяется червячная передача. Это компактный механизм, однако он обладает повышенным трением. Причина неисправности актуатора — механический износ червячного редуктора и возникновение большого зазора в червячной передаче.

Но если посмотреть еще глубже, то нагар на лопатках узла геометрии создает повышенное сопротивление и нагружает червячную пару.

Залог долговечности механизма в правильной эксплуатации двигателя, грамотном прогреве и езде на оптимальных режимах, ограничивающих нагарообразование.

Тревога бывает ложной

Обеспокоенность состоянием узла должна возникать в следующих случаях:

  1. потеря мощности;
  2. появление черного или синего дыма;
  3. повышение расхода масла;
  4. повышение расхода топлива;
  5. ненормальные звуки — скрежет, свист.

Признаки эти могут появляться как вместе, так и порознь. Они же могут быть не связанными с турбонагнетателем.

Перед началом диагностики необходимо убедиться, что воздушный и топливный фильтры в порядке.

Потеря мощности в сочетании с черным дымом говорит о переизбытке топлива или его плохом распыле, несвоевременной подаче, либо недостатке воздуха. Начинайте проверку с воздушного фильтра. Если черная копоть наблюдается на холостом ходу, или во время равномерной работы на небольшой мощности, дело скорее всего в топливной аппаратуре.

При неравномерной работе двигателя в первую очередь нужно понять, отчего не работает какой-то цилиндр.

Иногда на выходе из турбинной части, в месте соединения с приемной трубой, можно увидеть подтеки масла. При этом сизый дымок наблюдается на выхлопе. Не спешите выносить приговор. Дело в том, что масло в очень ограниченном количестве попадает в цилиндры. Там оно выгорает без следа. Но масло — не топливо, для его полного сгорания нужна высокая температура.

Если машина больше разогревалась на холостом ходу, чем ездила, в камере сгорания соответствующая температура не образовывалась. Масло раз за разом накапливается в цилиндрах, пока двигатель не начинает брызгами выплевывать его через выпускные клапана. В выхлопной магистрали оно тлеет, капает через неплотности.

Все что нужно сделать — дать двигателю нормальную нагрузку, не обязательно полную. Неполадка эта характерна для дизель-генераторов. Они часто работают на очень малых нагрузках, либо в холостую. У автомобилей это встречается гораздо реже.

Скрежет может возникать, если элементы рабочих колес цепляют за корпус. Свист говорит о неплотности воздушного тракта. Причиной может стать незатянутый крепеж: когда между разошедшимися фланцами попадается тонкая прокладка, звук получается пронзительный.

Как проверить турбину дизельного двигателя не снимая

Устойчивое вытекание масла из турбокомпрессора говорит о его неисправности:

  • Проверьте соединения системы — это может быть простая неплотность.
  • Внимательно осмотрите соединения трубок подвода/отвода масла.
  • Убедитесь в целостности трубки.
  • На заведенном двигателе пережмите патрубок, соединяющий компрессор со впускным коллектором.
  • Погазуйте — давление в нем должно повышаться. Если этого не происходит, следует искать негерметичность в системе.

Признаком износа подшипников является люфт вала:

  • Снимите патрубки с обеих или хотя бы одной сторон турбоагрегата,
  • Покачайте вал в радиальном направлении, сдвиньте его вдоль оси.
  • Обратитесь к руководству по ремонту за конкретными техническими нормами проверок.
  • Прокрутите рабочие колеса.
  • Послушайте, есть ли задевание элементов за корпус, (для этого не просто прокрутите лопасти механизма, а прижимайте при этом колеса за вал к разным сторонам корпуса).

При малейшем задевании турбоагрегат подлежит ремонту или замене. Осмотрите лопатки турбины и лопасти компрессора на предмет механических повреждений и абразивного износа.

Как проверить снятую турбину дизельного двигателя

Если турбина уже снята с двигателя, мы не можем тестировать ее на заведенном моторе. Зато осмотр на рабочем столе более наглядный. Механизм можно хорошо отмыть, тогда никакая трещина не укроется. У агрегата имеется два входа и два выхода, на каждом из которых можно обнаружить масло. Вот о чем это говорит:

Как просто проверить работоспособность турбины на дизельном двигателе

Многие автолюбители сетуют на то, что диагностика турбокомпрессора — вопрос не совсем простой, так как его работа завязана на множество факторов, параметров работы других систем дизеля.

Ну как, например, проверить турбину дизельного двигателя при покупке. Вот если бы на приборной панели был манометр, позволяющий определять работоспособность узла. Продавец и покупатель сразу бы наглядно видели состояние агрегата.

Приборы, позволяющие измерить давление наддува есть. Некоторые любители устанавливают их в салон своего авто. В сети об этом есть видео.

А вот проверить этот показатель, когда машина стоит на месте, не выйдет. Без нагрузки мотор не получит нужного количества топлива, значит и поток выхлопных газов будет недостаточным. Рабочее колесо не разовьет должных оборотов, даже если полностью выжать акселератор.

Как проверить давление наддува турбины дизельного двигателя

Проверку можно организовать, имея диагностический сканер и ноутбук. Его легко подключить к автомобилю и в динамике отслеживать показатели давления наддува, сравнивать его с номинальными параметрами, и, успокоившись, решиться на покупку. В процедуре участвуют двое: водитель разгоняет машину, в то время как специалист анализирует ситуацию на экране.

По показаниям программы опытный диагност уже может сделать определенные предположения о неисправности узла. По результатам проверки специалист дает заключение, стоит ли снимать и разбирать турбокомпрессор и переходить к следующему этапу ремонта — дефектации.

Турбонаддув двигателя TDI: описание,история,фото,видео.

Двигатель TDI (Turbocharged Direct Injection, дословно — турбонагнетатель и непосредственный впрыск) является современным дизельным двигателем с турбонаддувом. Двигатель разработан концерном Volkswagen, а название TDI является зарегистрированным товарным знаком.

Турбоанддув двигателя TDI обеспечивает высокую динамику автомобиля, экономичность и экологическую безопасность. Для создания оптимального давления наддува в широком диапазоне скоростных режимов в конструкции двигателя используется турбокомпрессор с изменяемой геометрией турбины. Турбокомпрессор имеет два общепринятых названия, которые используются разными производителями:

  1. VGT, Variable Geometry Turbocharger (дословно – турбокомпрессор с изменяемой геометрией) применяет BorgWarner;
  2. VNT, Variable Nozzle Turbine (дословно – турбина с переменным соплом) применяет Garrett.

Турбонаддув двигателя TDI:
А — воздух; Б — отработавшие газы.
1 — вакуумная магистраль; 2 — блок управления двигателем; 3 — датчики давления наддува и температуры воздуха на впуске; 4 — блок управления воздушной заслонкой; 5 — интеркулер; 6 — клапан рециркуляции отработавших газов; 7 — клапан ограничения давления наддува; 8 — турбонагнетатель; 9 — впускной коллектор; 10 — вакуумный привод направляющих лопаток; 11 — выпускной коллектор.

В отличие от обычного турбокомпрессора турбонагнетатель с изменяемой геометрией может регулировать направление и величину потока отработавших газов, чем достигается оптимальная частота вращения турбины и соответственно производительность компрессора.

VNT-турбина объединяет направляющие лопатки, механизм управления и вакуумный привод. Направляющие лопатки предназначены для изменения скорости и направления потока отработавших газов за счет изменения величины сечения канала. Они поворачиваются на определенный угол вокруг свой оси.

Поворот лопаток производится с помощью механизма управления. Механизм состоит из кольца и рычага. Срабатывание механизма управления обеспечивает вакуумный привод, воздействующий через тягу на рычаг управления. Работа вакуумного привода регулируется клапаном ограничения давления наддува, подключенным к системе управления двигателем. Клапан ограничения давления наддува срабатывает в зависимости от величины давления наддува, измеряемой двумя датчиками: датчиком давления наддува и датчиком температуры воздуха на впуске.

История создания мотора TDI

Дизельный двигатель всегда привлекал различные компании своим нераскрытым до конца потенциалом. Основной задачей, которая ставилась перед инженерами, являлось превращение шумного, тихоходного и малооборотистого агрегата в такой мотор, который можно было бы с легкостью устанавливать в легковые авто. Результатом стало создание мощного, экономичного и экологичного дизеля, который по своим эксплуатационным характеристикам был максимально приближен к бензиновому силовому агрегату.

Первопроходцем в этом направлении стала компания Audi, которая в далеком 1980-м установила 1.6-литровый дизельный 54-сильный атмосферник под капот своей популярной модели Audi 80. Дальнейшее совершенствование и развитие технологий привело к тому, что уже в 1989 Audi первыми в мире наладили и запустили в массовое производство компактный, тяговитый и мощный турбодизельный двигатель, который получил широко известное сегодня обозначение TDI.

Читайте также  Эксплуатация дизельного двигателя с турбиной

Первый TDI представлял собой дизельный двигатель с 5 цилиндрами, имел рабочий объем 2.5
литра, оснащался турбонаддувом с интеркулером (система промежуточного охлаждения
нагнетаемого воздуха). Максимальная мощность этого мотора составляла 120 л.с. Показатель
крутящего момента находился на отметке 256 Нм и достигался при выходе на 2250 об/ мин.

С момента появления на рынке данный силовой агрегат стал достаточно востребованным, так как представлял собой достойную альтернативу не только дизелям других производителей, но и вполне был способен составить конкуренцию моторам на бензине. TDI от Ауди обеспечивал прекрасную динамику, при этом расход топлива был существенно ниже по сравнению с другими аналогами.

Особенности и преимущества двигателя TDI

После вхождения Audi в состав WAG, концерн Volkswagen занял первые позиции в списке производителей дизельных двигателей. Инновационные инженерные решения и наработанные технологии производства обеспечили моторам TDI:

— низкий уровень шума при работе;
— высокий показатель крутящего момента;
— небольшой расход топлива;
— снижение токсичности отработавших газов;

Сегодня дизельный двигатель TDI сравнительно с аналогами имеет ряд преимуществ, среди которых отдельно выделяют топливную экономичность и КПД. Одним из основных плюсов заслуженно считается более высокое давление впрыска сравнительно с производительностью других систем. Давление впрыска в моторах TDI находится на отметке 2050 бар, тогда как аналоги выдают всего 1350 бар.
В TDI инжектор объединен с насосом, что позволяет реализовать максимальный контроль над всеми процессами топливного впрыска. Такое решение обеспечивает двигателю TDI высокий крутящий момент, а также эластичную работу данного дизеля на разных режимах. Благодаря данной системе топливоподачи сам процесс сгорания дизтоплива в моторах ТДИ более равномерный и происходит «деликатно», то есть с минимальными ударными нагрузками. По этой причине существенно снизился уровень шума во время работы дизеля, а также упало содержание оксида азота в отработавших газах. Другими словами, дизельный TDI двигатель является мощным, тихим, наименее вредным для окружающей среды и самым экономичным мотором среди доступных на рынке дизельных силовых агрегатов.

Надежность дизельных TDI

Установка турбонаддува позволила дизельному двигателю развивать большую мощность, а также увеличился КПД дизеля. Что касается моторов TDI, то данные двигатели являются достаточно надежными при условии правильной эксплуатации. Наиболее сильно на исправность этих ДВС влияет качество топлива и своевременное обслуживание. При должном уходе сам мотор может оказаться даже «миллионником».
Слабым местом TDI считаются форсунки и турбокомпрессор. Ресурс форсунок напрямую зависит от качества дизтоплива и общего состояния системы питания дизельного TDI. Срок службы турбины может варьироваться, средний показатель ресурса составляет 120-160 тыс. км.

Топливный впрыск в моторах TDI

На ранних этапах развития дизельных ДВС давление в системе, которая предполагает наличие ТНВД в связке с простыми механическими форсунками, составляло всего 20-40 Бар. Современный дизель имеет давление на минимальной отметке в 1600 Бар и выше. Тенденция к увеличению давления впрыска топлива связана с тем, что дизельные двигатели отличаются очень коротким временем, которое отводится на процесс смесеобразования.

Если коленвал вращается на 2000 об/мин, тогда на смешивание порции дизтоплива с воздухом выделяется всего 3-4 миллисекунды. Увеличение частоты вращения коленчатого вала еще более сокращает этот временной отрезок. Также приготовление однородной топливно-воздушной смеси становится возможным только благодаря увеличению давления впрыска. В случае с низким давлением топливная смесь будет некачественной, процесс сгорания отличается низкой эффективностью. Результатом становится повышение токсичности выхлопа дизеля и низкий КПД.

ТНВД в современном дизеле попросту создает давление в общей магистрали, а пьезоинжекторы (пьезоэлектрические форсунки) TDI способны впрыскивать четко определенное количество дизтоплива в цилиндры дизельного двигателя за очень короткий промежуток времени (менее чем за 0,2 миллисекунды) по команде ЭБУ.

Также в отдельных конструкциях систем питания дизельных ДВС можно встретить так называемые насос-форсунки. Это означает, что каждая инжекторная форсунка оборудована собственным насосом высокого давления. Получается, развитие дизельных технологий сегодня сводится к увеличению давления впрыска и максимальной эффективности работы системы турбонаддува. Так удается решить главные задачи: увеличить мощность и снизить уровень токсичности отработавших газов.

Турбонаддув TDI: турбина с изменяемой геометрией

От эффективности работы турбоанддува TDI в значительной мере зависит не только динамика, но и экономичность наряду с экологичностью. Правильное наддува воздуха должно быть реализовано в максимально широком диапазоне. По этой причине на моторы TDI ставится турбокомпрессор с изменяемой геометрией турбины.

Ведущие производители турбин в мире используют следующие названия:

  • Турбина VGT (от англ. Variable Geometry Turbocharger, что означает турбокомпрессор с изменяемой геометрией). Производится BorgWarner.
  • Турбокомпрессор для дизеля VNT (от англ. Variable Nozzle Turbine, что означает турбина с переменным соплом). Это название использует фирма Garrett.

Турбонагнетатель с изменяемой геометрией отличается от обычной турбины тем, что имеет возможность регулировки как направления, так и величины потока отработавших газов. Данная особенность позволяет добиться наиболее подходящей частоты вращения турбины применительно к конкретному режиму работы ДВС. Производительность компрессора в этом случае сильно повышается.

Например, турбина VNT имеет в основе конструкции специальные направляющие лопатки. Дополнительно имеется механизм управления, а также отмечено наличие вакуумного привода. Указанные лопатки турбины производят поворот на необходимый угол вокруг свой оси, тем самым способны менять скорость и направление потока выхлопа. Это происходит благодаря изменению величины сечения канала.

Механизм управления отвечает за поворот лопаток. Конструктивно механизм имеет кольцо и рычаг. На рычаг оказывает воздействие вакуумный привод, который управляет работой механизма посредством специальной тяги. Вакуумный привод управляется отдельным клапаном, который ограничивает давление наддува. Клапан является составным элементом электронной системы управления ДВС и срабатывает зависимо от показателей величины давления наддува. Эта величина измеряется отдельными датчиками:

  • температурный датчик, который измеряет температуру воздуха на впуске;
  • датчик давления наддува;
  1. Как известно, на низких оборотах двигателя скорость потока (энергия) выхлопа является достаточно низкой. В таком режиме направляющие лопатки обычно закрыты, чем достигается минимальное сечение в канале. В результате прохождения через такой канал даже небольшое количество газов более эффективно крутит турбину, заставляя компрессорное колесо вращаться заметно быстрее. Получается, турбокомпрессор обеспечивает большую производительность на низких оборотах.
  2. Если водитель резко нажимает на газ, тогда у обычной турбины возникает эффект так называемой «турбоямы». Под турбоямой следует понимать задержку отклика на нажатие педали газа, то есть не моментальный прирост мощности, а подхват после небольшой паузы. Такая особенность обусловлена инерционностью системы турбонаддува, в результате чего потока газов оказывается недостаточно в момент резкого увеличения оборотов коленвала. В турбинах с изменяемой геометрией направляющие лопатки осуществляют свой поворот с определенной задержкой, что позволяет поддерживать нужное давление наддува и практически избавиться от турбоямы.
  3. При езде на высоких и приближенных к максимальным оборотах двигателя отработавшие газы имеют максимум энергии. Чтобы предотвратить создание избыточного давления наддува лопатки в турбинах с изменяемой геометрией поворачиваются так, чтобы мощный поток газов двигался по широкому каналу с наибольшим поперечным сечением.

Относительно малый ресурс турбокомпрессора связан с тем, что на TDI ставятся исключительно турбины с изменяемой геометрией. Турбокомпрессор во время работы двигателя раскручивается до 200 тыс. об/мин и постоянно взаимодействует с потоком разогретых до 1000 градусов по Цельсию выхлопных газов. Такие температурные и механические нагрузки, а также индивидуальные особенности конструкции указанных турбин сравнительно быстро приводят к необходимости ремонта или замены турбокомпрессора.

Принцип работы турбины на дизеле

Принцип работы турбины на дизельном двигателе

Мотор, на который установлен турбонаддув, называется турбодизелем.

Устройство турбины дизельного двигателя

Турбокомпрессор выполняет задачу по нагнетанию воздуха под давлением в цилиндры мотора: чем больше будет воздуха, тем больше топлива силовой агрегат сможет сжечь, что, в свою очередь, приведет к увеличению мощности двигателя без увеличения объема имеющихся цилиндров.

Турбонаддув имеет особую конструкцию из двух элементов:

  • турбина;
  • компрессор.

Компрессор усиливает поступление воздуха в топливную систему. Составные части компрессора находятся в алюминиевом корпусе. Внутри находится ротор, закрепленный на оси турбины. Вращаясь, ротор вбирает воздух: большая скорость вращения приводит к большему количеству попавшего внутрь воздуха. Для набора скорости существует турбина.

Турбина состоит из корпуса с ротором внутри. Поскольку все элементы устройства взаимодействуют с газами высокой температуры, они изготавливаются из специальных материалов, невосприимчивых к такому воздействию.

Как работает турбина на дизельном двигателе

Ротор и ось, на которой он закреплен, вращаются в разных направлениях. Частота вращения довольно велика, поэтому элементы плотно прижимаются друг к другу.

Принцип работы турбины на дизельном двигателе следующий:

  • компрессор обеспечивает поступление воздуха из окружающей среды, который смешивается с дизельным топливом и затем направляется в цилиндры;
  • топливно-воздушная смесь загорается, начинают двигаться поршни. По ходу этого процесса образуются газы, поступающие в выпускной коллектор;
  • скорость движения газов, оказавшихся в корпусе, значительно возрастает. Вступая во взаимодействие с ротором, они приводят его во вращающееся положение;
  • вращение передается компрессорному ротору (за это отвечает вал), который снова втягивает новую порцию воздуха.

Таким образом, принцип работы основывается на взаимосвязи: чем сильнее вращается ротор, тем больше поступает воздуха, но при этом ротор увеличивает скорость вращения, если количество воздуха возрастает.

Как работает турбонаддув

Чтобы разобраться в работе турбонаддува, для начала следует уяснить понятия турбоподхвата и турбоямы.

Турбоподхват – ситуация, когда набравший скорость ротор увеличивает поступление воздуха в цилиндры, следствием чего становится повышение мощности двигателя.

Турбояма – момент небольшой задержки, наблюдаемый в работе турбины при увеличении количества поступившего горючего, что достигается нажатием на педаль газа. Задержка вызвана временем, которое нужно ротору для его разгона газами.

Турбонаддув увеличивает давление отработанных газов за счет более интенсивной работы двигателя. В то же самое время повышается и давление наддува: этот процесс требует контроля и регулировки, поскольку при достижении высоких значений велика вероятность поломки. Функции регулировки давления возложены на клапан, контролем предельно возможных значений занимаются мембрана и пружина с определенными значениями жесткости (когда достигается максимально допустимая величина, мембрана открывает клапан).

Работа турбины дизельного двигателя также требует контроля давления:

  1. компрессор через клапан, дабы снизить давление, сбрасывает лишний забранный воздух;
  2. когда давление поступившего воздуха достигает максимально допустимой величины, клапан выпускает газы, и ротор вращается с требуемой скоростью, а компрессор всегда забирает только нужное количество воздуха.

Минусы использования турбокомпрессора

У устройства есть определенные недостатки:

  1. возрастает расход топлива, что особенно ощущается при неправильной регулировке системы;
  2. температура в процессе сжатия повышается, что может привести к детонации. Чтобы избежать такой неприятности, необходим монтаж регуляторов, охладителей и ряда других элементов.
Читайте также  Как смазывается двигатель бензопилы?

Турбированный мотор: правила эксплуатации

Чтобы дизельная турбина работала с максимальным КПД и как можно дольше не выходила из строя, нужно придерживаться определенных правил в процессе эксплуатации автомобиля:

  • придерживаться графика замены масла, что позволит не допустить засорения маслопровода абразивами;
  • использовать качественное моторное масло, соответствующее по характеристикам в паспорте двигателя;
  • не трогаться сразу после включения мотора – движок должен быть прогрет;
  • сразу после прекращения движения не выключать двигатель, дав ему хотя бы 10 секунд поработать на холостых оборотах.

Как работает турбина: видео

Что такое турбо-яма?

Крыльчатка турбокомпрессора способна развивать до двухсот тысяч оборотов в минуту, благодаря чему данное устройство отличается большой инерционностью или, говоря иначе, имеет «турбо-яму», которая проявляется при резком нажатии на педаль газа. В этот момент крыльчатка медленно приводится в движение, и приходится некоторое время ждать, чтобы автомобиль начал набирать скорость.

Этот эффект имеет продолжительность всего несколько секунд, но, тем не менее, он не доставляет особого удовольствия при разгоне машины. На сегодняшний день производители смогли устранить эффект «турбо-ямы» путем установки двух перепускных клапанов. Один предназначен для выработанных газов, задача второго состоит в том, чтобы перепускать избыток воздуха в трубопровод турбокомпрессора из впускного коллектора.

Благодаря этой системе обороты крыльчатки при сбросе газа уменьшаются в замедленном темпе, в то время как при резком нажатии на педаль акселератора происходит поступление воздушной массы в двигатель в полном объеме.

Функция турбины, настройка

Функция турбокомпрессора заключается в том, чтобы увеличивать выходную мощность и крутящий момент двигателя. Благодаря турбине производители могут уменьшать количество рабочих цилиндров в двигателе без снижения мощности и крутящего момента.

Также все чаще стали выпускаться дизельные двигатели с двумя турбинами (Bi-Turbo), что позволяет производителям не только добиваться потрясающий мощности от дизельных автомобилей, но снижать уровень вредных веществ в выхлопе до рекордных значений.

Недавно также стали появляться турбины, которые могут работать, как от электричества, так и традиционно от газа, поступающего из выхлопной системы. Благодаря этому инженеры добились максимальной мощности и крутящего момента при небольших оборотах двигателя.

Использование двух турбокомпрессоров и других турбо деталей

На некоторые двигатели устанавливается два турбокомпрессора разного размера. Малый турбокомпрессор быстрее набирает обороты, снижая тем самым задержку ускорения, а большой обеспечивает больший наддув при высокой скорости вращения двигателя.

Когда воздух сжимается, он нагревается, а при нагревании воздух расширяется. Поэтому повышение давления от турбокомпрессора происходит в результате нагревания воздуха до его впуска в двигатель. Для того, чтобы увеличить мощность двигателя, необходимо впустить в цилиндр как можно больше молекул воздуха, при этом не обязательно сжимать воздух сильнее.

Охладитель воздуха или охладитель наддувочного воздуха является дополнительным устройством, которое выглядит как радиатор, только воздух проходит как внутри, так и снаружи охладителя. При впуске воздух проходит через герметичный канал в охладитель, при этом более холодный воздух подается снаружи по ребрам при помощи вентиляторов охлаждения двигателя.

Охладитель увеличивает мощность двигателя, охлаждая сжатый воздух от компрессора перед его подачей в двигатель. Это значит, что если турбокомпрессор сжимает воздух под давлением 7 фунт/дюйм2 (0,5 бар), охладитель осуществит подачу охлажденного воздуха под давлением 7 фунт/дюйм2 (0,5 бар), который является более плотным и содержит больше молекул, чем теплый воздух. Турбокомпрессоры также обладают преимуществом на большой высоте, где плотность воздуха ниже. Обычные двигатели будут работать слабее на большой высоте над уровнем моря, т.к. на каждый ход поршня подаваемая масса воздуха будет меньше. Мощность двигателя с турбокомпрессором также снизится, но менее заметно, т.к. разреженный воздух легче сжимать.

При установке мощного турбокомпрессора на двигатель с впрыском топлива, система может не обеспечить необходимое количество топлива — либо программное обеспечение контроллера не допустит, либо инжекторы и насос не смогут осуществить необходимую подачу. В этом случае необходимо осуществлять уже другие модификации для максимального использования преимуществ турбокомпрессора.

Схема турбины с изменяемой геометрией (VNT)

Она также известна под названием – трубина с переменным соплом. Данный тип турбины используется в дизельных двигателях. Девять подвижных лопастей, установленных в турбокомпрессоре, регулируют прохождение потока газов к турбине. Увеличение и блокировка потока газов достигается при помощи привода, регулирующего угол наклона девяти лопастей. Скорость потока газов и давление нагнетаемого воздуха согласуются с количеством оборотов двигателя во время изменения угла наклона лопастей.

Некоторые двигатели используют несколько турбокомпрессоров. Возможно использование двух (Твин Турбо), трех или же четырёх. В таких конструкциях они устанавливаются последовательно. Первый используется при низких оборотах, а второй — при высоких. Также существует схема установки компрессоров, при которой они располагаются параллельно друг другу. Она используется на V-образных двигателях. На каждый ряд цилиндров приходится по компрессору. Бытует мнение, что один большой турбокомпрессор менее производителен, чем два маленьких.

Система смазки

Это неотъемлемая составляющая любой турбины. Принцип работы системы смазки простой. Масло подается между подшипником и корпусом компрессора через множество каналов под давлением. Также она охлаждает нагретые детали компрессора. На некоторых двигателях турбина сопряжена с общей системой охлаждения. Благодаря этому достигается лучшее охлаждение.

Типы турбин

  • Раздельный. Он имеет два сопла для каждой пары цилиндров и два входа для отработавших газов. Первое сопло предназначено для быстрого реагирования, второе служит для максимальной производительности. В конструкции есть разделенные выпускные каналы. Сделано это для предотвращения перекрытия каналов при выпуске выхлопных газов.
  • Компрессор с переменным соплом. Также он известен, как турбина с изменяемой геометрией. Применяется на моторах с маркировкой TDI от «Фольксваген». Здесь в конструкции имеется 9 подвижных лопастей. Они могут регулировать поток выхлопных газов, что идут к турбине. Угол наклона лопастей – регулируемый, что позволяет согласовать давление нагнетаемого воздуха и скорость движения газов с оборотами ДВС.

Для большей производительности на автомобиль может быть установлено два компрессора. Такие системы получили маркировку «Твин-турбо».

Устанавливаются данные механизмы последовательно. При этом первая турбина работает на низких оборотах, а вторая на высоких. На V-образных моторах нагнетатели устанавливаются параллельно (на каждый ряд по одной турбине). Как показывает практика, установка двух небольших компрессоров значительно эффективнее, чем применение одного, но большого.

Паровая турбина

Принцип работы ее немного иной. Пар, который образуется в котле, под давлением попадает на крыльчатку турбины. Последняя совершает обороты, тем самым, вырабатывая механическую энергию. Обычно такая турбина соединена с генератором и применяется на электростанциях. Благодаря механической энергии, генератор производит электричество. Мощность таких агрегатов может достигать 1000 МВт.

Однако данный показатель существенно зависит от перепада давления пара на входе и выходе. Также подобные турбины применяются для привода питательного насоса, на кораблях и судах с ядерной установкой. Что касается военных кораблей, здесь применяется газовая турбина. Принцип работы ее заключается в следующем. Газ поступает через сопловой аппарат компрессора в область низкого давления. При этом он расширяется и ускоряется. Затем поток газа двигает лопатки турбины. Последние передают усилия на вал через диски. Таким образом создается полезный крутящий момент.

-инструкция

Простые способы увеличения давления наддува

Способ редукции давления поступающего на вестгейт, на мой взгляд более правильный способ контроля и регулировки давления нагнетаемого турбиной.

Этот способ применяется во многих механических буст- контроллерах, а так же в его разновидности, называемым в народе “свисток”, который применяет фирма Rallitronic Обзор блока Rallitronic

“Свисток” – способ настройки вестгейта. Это просто редуктор давления: он стравливает часть воздуха с вестгейта и получаем, что при давлении в 1.3 атм. на вестгейт давит 1.0 и он открывается чуть позже. Давление к нему подходит от впускного коллектора, по тонкому чёрному шлангу. “Свисток” ничего не обманывает, датчик измеряет давление как положено. Диапазон поднятия давления от 1атм до 1,35атм находится в допустимом диапазоне давлений . ЭБУ не ругается и работает в привычном режиме. Теоретически- это снижается ресурс двигателя, но все параметры просто приближаются к расчетным, не превышая их. Порог срабатывания перепускного клапана не регулируется ЭБУ. Там стоит обычная пневматическая “лягушка” с пружиной, расчитанной на открытие при достижении определённого давления. Но, поскольку точность такого регулятора далека от идеальной, производитель занижает порог срабатывания на пару десятых. Получается примерно 1.0 – 1.15. “Свисток” позволяет более тонко настроить эту систему. ЭБУ только контролирует, чтобы давление на выходе турбины (на входе в дроссельный патрубок) не превысило максимально допустимое значение. И никак не влияет ни на жёсткость пружины, ни на давление. Если это событие происходит, то прописывается ошибка и обороты сбрасываются.

Данное оборудование порой входит в состав зарубежных блоков чип-тюнинга.

Полезно для подбора параметров “свистка” использовать указатель величины буста или компьютер, типа мультитроникс. Показания по мультику 230-232кПа соответствуют давлению буста в 1,3-1,32 бара.

Можно изготовить у токаря или собрать из доступных автодеталей.
В первом варианте с “токарным свистком”, имеем фиксированное боковое отверстие, которое надо угадать (контролируя давление) и установить в середине свистка наружу.

Во втором- принцип тот же, только вместо бокового отверстия-отвод, на который ставится через удлинительный шланг ещё один жиклёр. Меняя этот жиклёр, регулируем давление. Боковой отвод тройника – это и есть редукционное отверстие. Только очень большое! Надеваем на него шланг и в шланг ещё один удлинитель с жиклёром. Теперь отверстие стало маленьким, более того, регулируемым. З/Ч для второго варианта это два жиклёра и один тройник. Плюс шланги (6мм) и хомуты. Можно использовать ниппельные удлинители от Газели в качестве держателей жиклёров. Можно использовать обычные камерные/бескамерные “соски”. Внешний диаметр у них подходящий, а внутренняя резьба (для золотника) совпадает с резьбой жиклёров для карбюратора. Таким образом поступил наш соклубник sanches86, с ФОРУМ ПЕРВОГО РОССИЙСКОГО КЛУБА ЛЮБИТЕЛЕЙ ПИКАПОВ

Мы изготавливали на базе тройника для воздуха.

С стороны турбины нарезаем внутренею резьбу на 6мм/0,75. Вкручиваем жиклёр на 1,2мм, можно его посадить на газовый фум. На противоположный отвод тройника устанавливаем шланг, длину и место вывода делаем кому как удобно. В месте вывода шланга ставим ещё один жиклёр, который и подбираем индивидуально, до нужного давления.

Второй жиклёр я изготовил из куска медной трубки 6мм, диаметр жиклёра у меня получился 1,05мм. Если этот жиклёр заменить заглушкой, то давление буста станет по стоку, порядка 1атм. Можно так же применить игольчатый краник Итальянской фирмы CAMOZZI, тогда давление можно будет плавно регулировать.

Читайте также  Обратка топливной системы дизельного двигателя

На базе фитингов 1/8 для воздуха CAMOZZI, можно собрать приличный DIY manual boost controller.

По этой схеме бустконтроллер позволяет не только регулировать давление наддува, но и бороться с турболагом. Дело в том, что штатный вестгейт открывается плавно и тем самым не даёт максимально быстро выйти турбине на рабочие обороты. Что делает данный бустконтроллер – до определённого давления он полностью закрыт, предупреждая начало открытия вестгейта. Вестгейт закрыт и выхлопные газы максимально быстро раскручивают турбину. Когда давление в турбине достигает определённого момента, бустконтроллер открывается, давление воздействует на вестгейт, он открывается и ограничивает поток выхлопных газов на турбину, ограничивая давление наддува, до заданного регулировкой жёсткости пружины контроллера. Как правило это давление, с небольшим запасом, мы делаем 1, 32атм.

Собрать подобное устройство можно на руках, проходя через хозяйственый рынок. Но надо обязательно сделать остановку возле павильона где торгуют газовым оборудованием и попросить просверлить отверстие 0,8мм в тройнике который идёт на вестгейт. Как правило они приторговывают жиклёрами для газовых котлов и на месте их калибруют с помощью шуруповёрта, со сверлом нужного диаметра. Отверстие нужно чтобы когда клапан контроллера закрывается, воздух с вестгейта выходил и не припятствовал ему возвращаться в первоначальное состояние.

Прекрасно сделанные, хромированные фитинги CAMOZZI, а также широкий спектр переходников,вдохновили меня собрать это устройство прямо на прилавке.

Подобные устройства собирает наш одноклубник, Константин из Нижнего Новгорода. Очередная партия Boostcontroller для пикаповодов, DIY manual boost controller

Описание и принцип работы турбонаддува двигателя

Принцип работы турбины дизельного двигателя основан на увеличении количества воздуха, смешиваемого с топливом и поступающего в камеру сгорания. За один и тот же период времени и при равных объемах цилиндров, двигатель с турбонаддувом может сжечь большее количество топлива, чем движок, не оснащенный таким устройством. А значит, его мощность и КПД в единицу времени значительно возрастет.

Рассмотрим устройство турбины дизельного двигателя, как работает, и каким образом достигаются такие показатели.

Конструктивные элементы системы

Для осуществления возложенных функций, система турбонаддува состоит из двух основных частей:

  1. Компрессор;
  2. Турбина.

Компрессор служит для нагнетания атмосферного воздуха в систему подачи топлива. Он состоит из корпуса и расположенной в нем крыльчатки, которая, вращаясь, всасывает воздух. Чем выше ее скорость вращения, тем больше объем принятого воздуха. Увеличению скорости способствует работа турбины.

Она также состоит из корпуса с крыльчаткой (ротором), которая приводится в движение выхлопными газами. В корпусе газы проходят через специальный канал, имеющий форму улитки, что позволяет им увеличить скорость.

Принцип работы и конструкция дизельного турбонагнетателя

Турбокомпрессор дизельного двигателя состоит из двух колес: турбинного и компрессорного. Данные колеса еще могут называться крыльчаткой. Крыльчатка турбины напрямую и жестко соединена с компрессорным колесом посредством оси. Устройство нагнетателя можно разделить на главные составные части:

  • корпус компрессора (1);
  • компрессорное колесо (2);
  • вал ротора или ось (3);
  • корпус турбины (4),
  • турбинное колесо(5);
  • корпус подшипников;

Как работает турбонаддув дизельного двигателя

Ротор турбины и крыльчатка компрессора жестко закреплены на одном валу. Таким образом, скорость вращения ротора передается крыльчатке. Круг замыкается:

  • Через компрессор воздух из атмосферы, смешиваясь с топливом, подается в цилиндры двигателя;
  • Смесь сгорает, приводя в движение поршни, и образовавшиеся в результате газы поступают в выпускной коллектор;
  • Здесь они принимаются в корпус турбины, разгоняются в канале и на выходе взаимодействуют с ротором, заставляя его вращаться;
  • Ротор через вал передает вращение крыльчатке компрессора, которая всасывает в корпус атмосферный воздух.

Получается взаимосвязанная схема работы, когда количество всасываемого воздуха зависит от скорости вращения крыльчатки и, наоборот, крыльчатка вращается быстрее при большем количестве забираемого воздуха.

Принцип работы турбонаддува имеет два момента, называемые турбоямой и турбоподхватом.

Первый момент характеризуется задержкой в работе турбины после увеличения подачи топлива нажатием на педаль газа, так как для разгона ротора выхлопными газами требуется время.

Вслед за турбоямой наступает момент турбоподхвата, когда разогнавшийся ротор резко увеличивает подачу воздуха в цилиндры, повышая мощность двигателя.

Особенности турбины на дизельном двигателе

Современные турбированные моторы, независимо от производителя и модели, имеют похожий принцип строения. Они характеризуются компактными размерами и простотой установки.

Большинство турбин выполнено в виде улитки. Ее каналы, предназначенные для выведения воздуха, на выходе сужены. Благодаря этому усиливается давление газов внутри и увеличивается скорость вращения турбины, а мощность мотора увеличивается.

Для производства корпусов двигателей применяются разные материалы – чугун либо алюминиевый сплав.

Регулировка давления наддува

Турбонаддув дизельного двигателя повышает его мощность за счет возрастания давления выхлопных газов, являющихся результатом увеличения числа оборотов и интенсивности работы мотора. Этот же процесс повышает давление наддува. Если его не регулировать, то на самых высоких оборотах оно может достичь опасных значений, приводящих к поломкам и механическим повреждениям.

Регулировка давления производится с помощью выпускного предохранительного клапана, а контроль максимально допустимого значения — с помощью мембраны и пружины определенной жесткости.

Суть работы: при достижении предельного значения давления, мембрана, установленная в корпусе компрессора, преодолевает воздействие пружины и открывает регулировочный клапан.

Давление регулируют как на стороне компрессора, так и на стороне турбины:

  1. Работающий турбокомпрессор сбрасывает в атмосферу через выпускной клапан излишки забранного воздуха, тем самым снижая давление.
  2. В турбине клапан выпускает отработанные газы под воздействием мембраны компрессора, когда давление всасываемого воздуха достигает максимального уровня. Благодаря этому, ротор вращается с установленной скоростью, а компрессор не забирает лишний воздух и не увеличивает давление.

Второй вариант расположения клапана позволяет изготавливать системы меньших габаритов. Кроме того, турбонагнетатель с клапаном в компрессоре подвержен чрезмерному нагреву из-за повышенной температуры выпускаемого воздуха, что негативно сказывается на эффективности его работы.

Поэтому турбонаддув дизельного двигателя чаще оснащают регулировочным клапаном в турбине, а регулировку в компрессоре используют в качестве дополнения.

Особенности эксплуатации турбированных двигателей

На режимах разгона автомобиля в силу инерционности системы возникает явление, получившее название “турбояма”. Сущность явления заключается в следующем:

  • Автомобиль движется с небольшой постоянной скоростью.
  • Турбина вращается в соответствующем режиме.
  • При резком нажатии на педаль ускорения в цилиндры двигателя подается больше топлива.
  • После его сгорания образуются отработавшие газы, которые с большей силой воздействуют на турбину и увеличивают мощность двигателя. Однако происходит это с некоторой временной задержкой.

Таким образом, между моментом нажатия на педаль и фактическим ускорением автомобиля присутствует некоторая временная задержка – “турбояма”. Также данное явление проявляется в виде недостатка крутящего момента на малых оборотах двигателя.

Виды систем турбонаддува

Производители разработали различные способы избавления от “турбоямы”:

  • Турбина с изменяемой геометрией. Конструкция предусматривает изменение сечения входного канала. За счет этого выполняется регулирование потока отработавших газов.
  • Два турбокомпрессора, установленных последовательно (Twin Turbo). На каждый режим работы (обороты двигателя) предусматривается свой компрессор.
  • Два турбокомпрессора, установленных параллельно (Bi Turbo). Схема разбиения на две турбины снижает инерцию системы, и турбояма становится не так ощутима.
  • Комбинированный наддув. Устройство предусматривает и механический, и турбонаддув. Первый включается при низких оборотах, второй при высоких.

Что такое турботаймер и для чего он необходим


Турботаймер
Другой стороной инерционности системы с турбокомпрессором является необходимость снижать обороты постепенно. Нельзя резко выключать зажигание после того, как двигатель работал на высоких оборотах. Это обусловлено тем, что подшипники будут продолжать вращение, а поскольку масло не будет подаваться в систему – возникнет повышенное трение. Оно, в свою очередь, спровоцирует быстрый износ вала турбины.

Для решения этой проблемы применяется турботаймер. Это устройство устанавливается на приборной панели и подключается в цепь зажигания. После выключения зажигания ключом система запускает таймер, который глушит двигатель спустя некоторое время, давая возможность турбине снизить обороты до приемлемых значений.

Система смазки

Смазка вала турбонагнетателя осуществляется смазочной системой двигателя.

На вал устанавливают уплотнительные кольца, предотвращающие проникновение масла в полости корпусов компрессора и турбины. Они же предохраняют корпуса от перегрева. Но герметичность обеспечивается не столько уплотнениями, сколько разностью величины давления в различных частях агрегата. Эту разницу давлений создает турбинная ось (вал), имеющая неравномерный диаметр.

Особая форма литья корпуса, в котором расположен вал, также способствует удержанию масла.

Если мотор не развивает требуемую мощность, это может быть симптомом неисправности турбонаддува. Наиболее часто встречающиеся проблемы — загрязнение воздушного фильтра или потеря герметичности впускного коллектора. Кроме потери мощности, их можно диагностировать по несвойственному для исправной машины цвету и количеству дыма, выходящего из выхлопной трубы.

Особенности проверки турбины в дизеле

Диагностика турбины должна осуществляться опытными мастерами на СТО, где есть высокоточное профессиональное оборудование, инструменты и прочие приспособления. Однако, попасть быстро к специалистам получается далеко не всегда. В такой ситуации можно осмелиться осуществить самостоятельную проверку.

Визуальный осмотр автомобиля зачастую бывает достаточным для того, чтобы определить наиболее распространенные типы поломок. Особое внимание стоит уделить цвету выхлопов:

  • белый дым – свидетельство о нарушении проходимости воздушных каналов либо маслопровода
  • выхлопы с копотью – говорят об утечке в области механизмов для подачи воздуха
  • сизый дым – признак протекания масла в турбине.

Второй этап проверки проводится после прогревания мотора. При резком включении и выключении мотора нужно подержать патрубок. Если наблюдается вздутие последнего из-за накопления воздуха, то турбина в порядке. В обратном случае — нужен ремонт.

Состояние турбокомпрессора может красноречиво свидетельствовать о наличии неполадок. Масляные следы, пятна, влага на корпусе или узлах – эти «симптомы» также являются признаками проблем. При их обнаружении стоит обратиться в СТО для более детальной диагностики, а также оперативной и эффективной ликвидации неисправностей.

Недостатки турбокомпрессоров

Принцип работы турбины на дизельном двигателе создает и негативные факторы:

  • Повышенный расход горючего. Возможность сжечь большее количество солярки за счет увеличенного объема подачи воздуха, вместе с мощностью повышает и «прожорливость» машины. Уменьшить аппетит до разумных пределов позволяет правильная регулировка системы.
  • Положительные стороны наддува приводят к многократному повышению температуры во время такта сжатия, что может вызвать детонацию в двигателе. Решается эта проблема установкой охладителей, регуляторов и прочих элементов.

Правила эксплуатации

Чтобы в полной мере использовать ресурс турбины дизельного мотора и продлить ее срок службы, необходимо выполнять ряд условий:

  • Регулярно менять масло в системе, чтобы не допустить попадания абразива в маслопровод и его засорения.
  • Применять только качественное масло, имеющее сертификат, той марки, которая соответствует указанной в паспортных данных двигателя.
  • Прогревать мотор перед началом движения и не давать холодному двигателю высоких нагрузок.
  • Никогда резко не отключать движок, а после остановки автомобиля давать ему возможность поработать несколько секунд на холостых оборотах.