Что называется двигателем внутреннего сгорания?

Все о двигателях внутреннего сгорания: устройство, принцип работы и тюнинг

Двигатель внутреннего сгорания – это такой тип мотора, у которого топливо воспламеняется в рабочей камере внутри, а не в дополнительных внешних носителях. ДВС преобразует давление от сгорания топлива в механическую работу.

Из истории

Первый ДВС являлся силовым агрегатом Де Риваза, по имени его создателя Франсуа де Риваза, родом из Франции, который сконструировал его в 1807 году.

В этом двигателе уже было искровое зажигание, он был шатунный, с поршневой системой, то есть, это своего рода прообраз современных моторов.

Спустя 57 лет соотечественник де Риваза Этьен Ленуар изобрел уже двухтактный агрегат. Этот агрегат имел горизонтальное расположение своего единственного цилиндра, наличествовал искровым зажиганием и работал на смеси светильного газа с воздухом. Работы двигателя внутреннего сгорания в то время хватало уже на малогабаритные лодки.

Еще через 3 года конкурентом стал немец Николаус Отто, детищем которого стал уже четырехтактный атмосферный мотор с вертикальным цилиндром. КПД в данном случае увеличился на 11%, в отличие от кпд двигателя внутреннего сгорания Риваза, он стал 15-процентным.

Чуть позже, в 80-х годах этого же столетия, российский конструктор Огнеслав Костович впервые запустил агрегат карбюраторного типа, а инженеры из Германии Даймлер и Майбах усовершенствовали его в облегченный вид, который стал устанавливаться на мото- и автотехнике.

В 1897 году Рудольф Дизель выводит в свет ДВС по типу воспламенения от сжатия, используя нефть в качестве топлива. Этот вид двигателя стал родоначальником дизельных моторов, использующихся по настоящее время.

Виды двигателей

  • Бензиновые моторы карбюраторного типа работают от топлива, смешанного с воздухом. Смесь эта предварительно подготавливается в карбюраторе, далее поступает в цилиндр. В нем смесь сжимается, воспламеняется искрой от свечи зажигания.
  • Инжекторные двигатели отличаются тем, что смесь подается напрямую от форсунок во впускной коллектор. У этого вида имеются две системы впрыска – моновпрыск и распределенный впрыск.
  • В дизельном моторе воспламенение происходит без свечей зажигания. В цилиндре данной системы находится воздух, разогретый до температуры, которая превышает температуру воспламенения топлива. В этот воздух через форсунку подается топливо, и вся смесь воспламеняется по образу факела.
  • Газовый ДВС имеет принцип теплового цикла, топливом может являться как природный газ, так и углеводородный. Газ поступает в редуктор, где давление его стабилизируется в рабочее. Затем попадает в смеситель, а в итоге воспламеняется в цилиндре.
  • Газодизельные ДВС работают по принципу газовых, только в отличие от них, смесь воспламеняется не свечой, а дизельным топливом, впрыск которого происходит также, как и у обычного дизельного мотора.
  • Роторно-поршневые типы двигателей внутреннего сгорания принципиально отличаются от остальных наличием ротора, который вращается в камере, имеющей форму восьмерки. Чтобы понять, что такое ротор, нужно усвоить, что в данном случае ротор выполняет роль поршня, ГРМ и коленчатого вала, то есть специальный механизм ГРМ здесь полностью отсутствует. При одном обороте происходит сразу три рабочих цикла, что сравнимо с работой двигателя с шестью цилиндрами.

Принцип работы

В настоящее время преобладает четырехтактный принцип работы двигателя внутреннего сгорания. Это объясняется тем, что поршень в цилиндре проходит четыре раза – вверх и вниз одинаково по два.

Как работает двигатель внутреннего сгорания:

  1. Первый такт – поршень при движении вниз втягивает топливную смесь. При этом клапан впуска находится в открытом виде.
  2. После достижения поршнем нижнего уровня, он двигается вверх, сжимая горючую смесь, которая, в свою очередь, принимает объем камеры сгорания. Этот этап, включенный в принцип работы двигателя внутреннего сгорания, является вторым по счету. Клапаны, при этом, находятся в закрытом виде, и чем плотнее, тем качественнее происходит сжатие.
  3. В третий такт включается система зажигания, так как здесь происходит воспламенение топливной смеси. В назначении работы двигателя он называется «рабочим», так как при этом начинается процесс привода в работу агрегата. Поршень от взрыва топлива начинает движение вниз. Как и во втором такте, клапаны находятся в закрытом состоянии.
  4. Завершающий такт – четвертый, выпускной, который дает понять, что такое завершение полного цикла. Поршень через выпускной клапан избавляется от отработавших газов цилиндра. Затем все циклически повторяется снова, понять, как работает двигатель внутреннего сгорания, можно представив цикличность работы часов.

Устройство ДВС

Устройство двигателя внутреннего сгорания логично рассматривать с поршня, так как он является основным элементом работы. Он представляет собой своеобразный «стакан» с пустой полостью внутри.

Поршень имеет прорези, в которых фиксируются кольца. Отвечают эти самые кольца за то, чтобы горючая смесь не выходила под поршень (компрессионное), а так же за то, чтобы масло не попадало в пространство над самим поршнем (маслосъемное).

Порядок работы

  • При попадании внутрь цилиндра топливной смеси, поршень проходит четыре вышеописанных такта, и возвратно-поступательное движение поршня приводит в движение вал.
  • Дальнейший порядок работы двигателя следующий: верхняя часть шатуна закреплена на пальце, который находится внутри юбки поршня. Кривошип коленвала фиксирует шатун. Поршень, при движении, вращает коленвал и последний, в свое время, передает крутящий момент системе трансмиссии, оттуда на систему шестерен и далее к ведущим колесам. В устройстве двигателей автомобилей с задним приводом посредником до колес выступает еще и карданный вал.

Конструкция ДВС

Газораспределительный механизм (ГРМ) в устройстве двигателя внутреннего сгорания отвечает за впрыск топлива, а так же за выпуск газов.

Механизм ГРМ состоит из верхнеклапанного и нижнеклапанного, может быть двух видов – ременной или цепной.

Шатун чаще всего изготавливается из стали путем штамповки или ковки. Есть виды шатунов, изготовленные из титана. Шатун передает усилия поршня коленвалу.

Коленвал из чугуна или из стали представляет собой набор коренных и шатунных шеек. Внутри этих шеек есть отверстия, отвечающие за подачу масла под давлением.

Принцип работы кривошипно-шатунного механизма в двигателях внутреннего сгорания заключается в преобразовании движений поршня в движения коленвала.

Головка блока цилиндров (ГБЦ), большинства двигателей внутреннего сгорания, как и блок цилиндров, чаще всего изготавливается из чугуна и реже из различных сплавов алюминия. В ГБЦ находятся камеры сгорания, каналы впуска – выпуска, отверстия свечей. Между блоком цилиндров и ГБЦ находится прокладка, обеспечивающая полную герметичность их соединения.

В систему смазки, которую включает в себя двигатель внутреннего сгорания, входит поддон картера, маслозаборник, маслонасос, масляный фильтр и масляный радиатор. Все это соединено каналами и сложными магистралями. Система смазки отвечает не только за уменьшения трения между деталями мотора, но и за их охлаждение, а также за уменьшение коррозии и износа, увеличивает ресурс ДВС.

Устройство двигателя, в зависимости от его вида, типа, страны изготовителя, может быть чем-либо дополнено или, напротив, могут отсутствовать какие-то элементы ввиду устаревания отдельных моделей, но общее устройство двигателя остается неизменным так же, как и стандартный принцип работы двигателя внутреннего сгорания.

Дополнительные агрегаты

Само собой, двигатель внутреннего сгорания не может существовать как отдельный орган без дополнительных агрегатов, обеспечивающих его работу. Система запуска раскручивает мотор, приводит его в рабочее состояние. Существуют разные принципы работы запуска в зависимости от типа мотора: стартерный, пневматический и мускульный.

Трансмиссия позволяет развить мощность при узком диапазоне оборотов. Система питания обеспечивает ДВС двигатель малым электричеством. В нее входит аккумуляторная батарея и генератор, обеспечивающий постоянный поток электричества и заряд АКБ.

Выхлопная система обеспечивает выпуск газов. В любое устройство двигателя автомобиля входят: выпускной коллектор, который собирает газы в единую трубу, каталитический конвертер, который снижает токсичность газов путем восстановления оксида азота и использует образовавшийся кислород, чтобы дожечь вредные вещества.

Глушитель в этой системе служит для того, чтобы уменьшить выходящий из мотора шум. Двигатели внутреннего сгорания современных автомобилей должны соответствовать установленным законом нормам.

Тип топлива

Следует помнить и об октановом числе топлива, которое используют двигатели внутреннего сгорания разных типов.

Чем выше октановое число топлива – тем больше степень сжатия, что приводит к увеличению коэффициента полезного действия двигателя внутреннего сгорания.

Но существуют и такие двигатели, для которых увеличение октанового числа выше положенного заводом изготовителем, приведет к преждевременной поломке. Это может произойти путем прогорания поршней, разрушения колец, закопченности камер сгорания.

Заводом предусмотрено свое минимальное и максимальное октановое число, которое требует двигатель внутреннего сгорания.

Тюнинг

Любители увеличить мощность работы двигателей внутреннего сгорания зачастую устанавливают (если это не предусмотрено заводом изготовителем) различного рода турбины или компрессоры.

Компрессор на холостых оборотах выдает небольшую мощность, при этом держит стабильные обороты. Турбина же, наоборот, выжимает максимальную мощность при ее включении.

Установка тех или иных агрегатов требует консультации с мастерами, имеющими опыт работы в узком направлении, поскольку ремонт, замена агрегатов, или же дополнение двигателя внутреннего сгорания дополнительными опциями – это отклонение от назначения работы двигателя и уменьшают ресурс ДВС, а неправильные действия могут привести к необратимым последствиям, то есть работа двигателя внутреннего сгорания может быть навсегда окончена.

Принцип работы и устройство двигателя

Двигатель внутреннего сгорания называется так потому что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, образующихся в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя. Выделяемая в этом процессе энергия преобразуется в механическую работу.


В процессе эволюции ДВС выделились несколько типов двигателей, их классификация и общее устройство:

  • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на:
    • карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
    • инжекторные, в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
    • дизельные, в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается до температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
  • Роторно-поршневые двигатели внутреннего сгорания. Здесь тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
  • Газотурбинные двигатели внутреннего сгорания. Особенности их устройства заключаются в преображении тепловой энергии в механическую работу с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.

Далее рассматриваются только поршневые двигатели, так как только они получили широкое распространение в автомобильной промышленности. Основные причины тому: надежность, стоимость производства и обслуживания, высокая производительность.

Устройство двигателя внутреннего сгорания

Первые поршневые ДВС имели лишь один цилиндр небольшого диаметра. В дальнейшем, для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. “Сердце” современного автомобиля может иметь до 12 цилиндров.

Читайте также  Газонокосилки с асинхронным двигателем и прямым приводом

Наиболее простым является двигатель с рядным расположением цилиндров. Однако, с увеличением количества цилиндров растет и линейный размер двигателя. Поэтому появился более компактный вариант расположения — V-образный. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Обычно используется для 6-цилиндровых двигателей и более.

Одна из основных частей двигателя — цилиндр (6), в котором находится поршень (7), соединенный через шатун (9) с коленчатым валом (12). Прямолинейное движение поршня в цилиндре вверх и вниз шатун и кривошип преобразуют во вращательное движение коленчатого вала.

На конце вала закреплен маховик (10), назначение которого придавать равномерность вращению вала при работе двигателя. Сверху цилиндр плотно закрыт головкой блока цилиндров (ГБЦ), в которой находятся впускной (5) и выпускной (4) клапаны, закрывающие соответствующие каналы.

Клапаны открываются под действием кулачков распределительного вала (14) через передаточные механизмы (15). Распределительный вал приводится во вращение шестернями (13) от коленчатого вала.
Для уменьшения потерь на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.

Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой. Для этого в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Топливо воспламеняется в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение.

Принцип работы двигателя

Из-за низкой производительности и высокого расхода топлива 2-тактных двигателей практически все современные двигатели производят с 4-тактными циклами работы:

  1. Впуск топлива;
  2. Сжатие топлива;
  3. Сгорание;
  4. Вывод отработанных газов за пределы камеры сгорания.

Точка отсчета — положение поршня вверху (ВМТ — верхняя мертвая точка). В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. Это первый такт цикла.

Во время второго такта поршень достигает самой нижней точки (НМТ — нижняя мертвая точка), при этом впускное отверстие закрывается, поршень начинает движение вверх, из-за чего топливная смесь сжимается. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе поршень достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени работы двигателя.

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч зажигания – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. При такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600О С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Системы двигателя

Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. ГРМ (механизм регулировки фаз газораспределения);
  2. Система смазки;
  3. Система охлаждения;
  4. Система подачи топлива;
  5. Выхлопная система.

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал;
  • Впускные и выпускные клапаны с пружинами и направляющими втулками;
  • Детали привода клапанов;
  • Элементы привода ГРМ.

ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.

Система смазки

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон);
  • Насос подачи масла;
  • Масляный фильтр с редукционным клапаном;
  • Маслопроводы;
  • Масляный щуп (индикатор уровня масла);
  • Указатель давления в системе;
  • Маслоналивная горловина.

Система охлаждения

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя;
  • Насос (помпа);
  • Термостат;
  • Радиатор;
  • Вентилятор;
  • Расширительный бачок.

Система подачи топлива

Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак;
  • Датчик уровня топлива;
  • Фильтры очистки топлива — грубой и тонкой;
  • Топливные трубопроводы;
  • Впускной коллектор;
  • Воздушные патрубки;
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.

Выхлопная система

Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор;
  • Приемная труба глушителя;
  • Резонатор;
  • Глушитель;
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Разновидности ДВС: какие существуют двигатели внутреннего сгорания

Поршневой ДВС (двигатель внутреннего сгорания) является тепловой машиной и работает по принципу сжигания смеси топлива и воздуха в камере сгорания. Главной задачей такого устройства выступает преобразование энергии сгорания топливного заряда в механическую полезную работу.

Не смотря на общий принцип действия, сегодня существует большое количество агрегатов, которые существенно отличаются друг от друга благодаря целому ряду индивидуальных конструктивных особенностей. В этой статье мы поговорим о том, какие бывают двигатели внутреннего сгорания, а также в чем состоят их главные особенности и отличия.

Типы двигателей внутреннего сгорания

Начнем с того, что ДВС может быть двухтактным и четырехтактным. Что касается автомобильных моторов, указанные агрегаты четырехтактные. Такты работы двигателя представляют собой:

  • впуск топливно-воздушной смеси или воздуха (что зависит от типа ДВС);
  • сжатие смеси горючего и воздуха;
  • сгорание топливного заряда и рабочий ход;
  • выпуск из камеры сгорания отработавших газов;

По такому принципу работают как бензиновые, так и дизельные поршневые моторы, которые нашли широкое применение в автомобилях и на другой технике. Также стоит упомянуть и агрегаты на газу, в которых газовое топливо сжигается аналогично дизтопливу или бензину.

Бензиновые силовые агрегаты

Что касается поршневых бензиновых моторов, такие двигатели имеют систему зажигания для воспламенения рабочей смеси от искры. Системы питания в таких агрегатах могут быть карбюраторными или инжекторными (впрысковыми).

Приготовление рабочей смеси в карбюраторных ДВС происходит в карбюраторе, далее смешанный бензин и воздух подаются во впускной коллектор. Сегодня такие системы считаются устаревшими, так как не способны обеспечить двигателю должную экологичность и экономичность.

Читайте также  Турбинный двигатель на автомобиле

Впрысковые ДВС по типу конструкции системы питания бывают моноинжекторными (моновпрыск) или системами с распределенным впрыском. В первом случае схема предполагает наличие только одной форсунки, которая впрыскивает горючее во впускной коллектор. Решения с распределенным впрыском имеют отдельную форсунку на каждый цилиндр, которая установлена рядом с впускными клапанами.

Дальнейшее развитие систем топливоподачи привело к появлению моторов с прямым (непосредственным) впрыском. Главным их отличием от предшественников является то, что воздух и топливо подается в камеру сгорания отдельно. Другими словами, форсунка устанавливается не над впускными клапанами, а монтируется прямо в цилиндр.

Подобное решение позволяет подавать топливо напрямую, причем сама подача разделена на несколько этапов (подвпрысков). В результате удается добиться максимально эффективного и полноценного сгорания топливного заряда, двигатель получает возможность работать на бедной смеси (например, моторы семейства GDI), падает расход топлива, снижается токсичность выхлопа и т.д.

Дизельные моторы

Дизельный двигатель работает на дизтопливе, а также в значительной мере отличается от бензинового. Основное отличие заключается в отсутствии искровой системы зажигания. Воспламенение смеси топлива и воздуха в дизеле происходит от сжатия.

Если просто, сначала в цилиндрах сжимается воздух, который сильно нагревается. В последний момент происходит впрыск солярки прямо в камеру сгорания, после чего нагретая и сильно сжатая смесь воспламеняется самостоятельно.

Однако в списке минусов таких агрегатов можно выделить чувствительную топливную систему, а также больший вес и меньшие скорости в режиме максимальных оборотов. Дело в том, что дизель изначально «тихоходный» и имеет меньшую частоту вращения коленчатого вала по сравнению с бензиновыми ДВС.

Дизели также отличаются большей массой, так как особенности воспламенения от сжатия предполагают более серьезные нагрузки на все элементы такого агрегата. Другими словами, детали в дизельном моторе более прочные и тяжелые. Также дизельные моторы более шумные, что обусловлено процессом воспламенения и сгорания дизельного топлива.

Роторный двигатель

Двигатель Ванкеля (роторно-поршневой двигатель) представляет собой принципиально иную силовую установку. В таком ДВС привычные поршни, которые совершают возвратно-поступательные движения в цилиндре, попросту отсутствуют. Главным элементом роторного мотора является ротор.

Указанный ротор вращается по заданной траектории. Роторные ДВС бензиновые, так как подобная конструкция не способна обеспечить высокую степень сжатия рабочей смеси.

Если говорить о минусах, то стоит выделить заметно сниженный ресурс сравнительно с поршневыми агрегатами, а также высокий расход топлива. Также роторный двигатель отличается повышенной токсичностью, то есть не совсем вписывается в современные экологические стандарты.

Гибридный двигатель

Гибридный силовой агрегат фактически является сочетанием поршневого бензинового или дизельного ДВС и электромотора. Также в конструкции присутствует тяговая аккумуляторная батарея, которая питает электродвигатель.

Также во время работы гибридной установки активно используется схема рекуперации энергии. Например, во время торможения двигателем работает генератор, который подзаряжает тяговый аккумулятор. Такое сочетание двух типов силовых установок позволяет получить улучшение разгонной динамики (особенно когда одновременно задействован ДВС и электромотор), наблюдается существенная экономия топлива и малый выброс токсичного выхлопа.

Компоновка и технические характеристики ДВС

Еще стоит добавить, что существуют многочисленные разновидности двигателей внутреннего сгорания, которые отличаются друг от друга по компоновке и расположению цилиндров.

Дело в том, что пространство в моторном отсеке ограничено, при этом на разных автомобилях возникает необходимость уместить в таком пространстве агрегат с тем или иным количеством цилиндров.

Как правило, по компоновке на большинстве машин чаще всего можно встретить:

  • рядный двигатель;
  • V-образный мотор;
  • оппозитный двигатель;

Рядный двигатель означает, что все его цилиндры расположены в одной плоскости. Рядные «четверки» (4-х цилиндровый мотор) являются самым распространенным типом ДВС. Рядные «шестерки» также весьма популярны, они меньше вибрируют, имеют приемлемую мощность, однако такой двигатель получается достаточно длинным.

Еще одним вариантом является V-образный двигатель. Цилиндры в таком моторе располагаются в двух плоскостях, напоминая литеру «V». Подобный ДВС имеет 6 или 8 цилиндров (V6 или V8), при этом длина двигателя сравнительно с рядным мотором меньше, хотя ширина закономерно увеличивается. Еще добавим, что угол между плоскостями принято называть углом развала.

Добавим, что существуют так называемые двигатели типа VR. Их особенностью является малый угол развала, позволяя уменьшить размеры ДВС в длину и ширину. Также стоит упомянуть мощные W-двигатели. Указанные силовые агрегаты многоцилиндровые (например, W12) Что касается компоновки, конструкция может включать в себя сразу три ряда цилиндров, которые расположены под большим углом развала.

Еще одним вариантом является расположение тех же трех рядов цилиндров, при этом угол развала максимально уменьшен (как и в случае с VR-компоновкой). Как правило, именно последний вариант прижился на мощных легковых авто класса «премиум», спорткарах и солидных внедорожниках. Дело в том, что даже при таком количестве цилиндров двигатель все равно отличается компактностью.

Основные технические параметры ДВС

Двигатели внутреннего сгорания также имеют целый ряд характеристик и параметров, которые закладываются конструктивно. Если просто, речь идет о рабочем объеме, степени сжатия, мощности и крутящем моменте и т.д.

Естественно, чем большим окажется показатель крутящего момента, тем большей будет тяга. Другими словами, от данного показателя зависит разгонная динамика. Что касается мощности двигателя, это величина, которая отображает произведенную работу за единицу времени.

Увеличение крутящего момента и мощности возможно посредством двух способов:

  • больший рабочий объем;
  • сжигание большего количества топливно-воздушной смеси;

Если просто, в первом случае речь идет о физическом увеличении камеры сгорания и объема цилиндров. Во втором подразумевается принудительная подача воздуха в цилиндры под давлением для сжигания большего количества топлива.

Как правило, мощные двигатели с большим объемом атмосферные, то есть «засасывают» наружный воздух в цилиндры самостоятельно благодаря возникающему разрежению от движения поршней. Мощные агрегаты, при этом обладающие меньшим объемом, оснащаются механическими компрессорами или турбонаддувом. В таких ДВС воздух нагнетается принудительно, то есть поступает в камеру сгорания под давлением.

Что в итоге

Как видно, приведенный выше материал дает общее представление о том, какие есть двигатели внутреннего сгорания. При этом даже с учетом общего принципа действия, силовые агрегаты могут значительно отличаться по таким показателям, как компоновка, мощность, крутящий момент, расход горючего и т.д.

Более того, даже двигатели, схожие по конструкции (например, рядный четырехцилиндровый мотор), могут иметь разное количество впускных и выпускных клапанов на один цилиндр (например, 8-и и 16-клапанные моторы).

По этой причине для объективной оценки производительности того или иного двигателя на разных оборотах, причем не на коленвалу, а на колесах, необходимо проводить специальные комплексные замеры на динамометрическом стенде.

Усовершенствание конструкции поршневого двигателя, отказ от КШМ: бесшатунный двигатель, а также двигатель без коленвала. Особенности и перспективы.

Моторы линейки TSI. Конструктивные особенности, преимущества и недостатки. Модификации с одним и двумя нагнетателями. Рекомендации по эксплуатации.

Конструктивные особенности двигателей GDI с непосредственным впрыском от моторов с распределенным впрыском топлива. Режимы работы, неисправности GDI.

Дизельный мотор TDI. Отличительные особенности двигателя данного типа. Преимущества и недостатки, ресурс, особенности турбонаддува. советы по эксплуатации.

Двигатель семейства FSI: отличия, особенности, плюсы и минусы силового агрегата данного типа. Распространенные проблемы двигателей FSI, обслуживание мотора.

Линейка дизельных двигателей CRDi Hyundai/KIA: сильные и слабые стороны моторов данного типа, особенности эксплуатации, ремонта и обслуживания.

Устройство и теория двигателей внутреннего сгорания

Устройство и теория двигателей внутреннего сгорания

В данной статье разберем устройство и теорию двигателей внутреннего сгорания, рассмотрим из чего они состоят и как работают. Вы найдете основные понятия и термины, описывается конструкция и работа двигателя.

Автомобильные двигатели различают:

  • по способу приготовления горючей смеси — с внешним смесеобразованием (карбюраторные, инжекторные, газовые двигатели) и с внутренним смесеобразованием (дизели),
  • по роду применяемого топлива — бензиновые (работающие на бензине), газовые (на горючем газе) и дизели (работающие на дизельном топливе),
  • по способу охлаждения — с жидкостным и воздушным охлаждением,
  • расположению цилиндров — рядные и V-образные,
  • по способу воспламенения горючей (рабочей) смеси—с принудительным зажиганием от электрической искры (карбюраторные и инжекторные двигатели) или с самовоспламенением от сжатия (дизели).

Бензиновые – это двигатели, работающие на бензине, с принудительным зажиганием. Приготовление топливно-воздушной смеси, и её дозирование осуществляют карбюраторные и инжекторные системы питания. Смесь в цилиндре воспламеняется в конце такта сжатия, принудительно от электрической искры.

Дизельные – это двигатели, работающие на дизельном топливе с воспламенением от сжатия. В дизельных двигателях смесь приготавливается непосредственно в цилиндре из воздуха и топлива, подаваемых в цилиндр раздельно. Воспламенение топливно-воздушной смеси в цилиндре происходит самопроизвольно от воздействия высокой температуры при сжатии. Исключением является система непосредственного впрыска бензина, где зажигание смеси осуществляется от электрической искры.

Газовые – это двигатели, которые работают на пропано-бутановом газе, с принудительным зажиганием. Перед подачей в цилиндры двигателя, газ смешивается с воздухом. По принципу работы такие двигатели практически не отличаются от бензиновых и мы не будем их рассматривать. Однако, если вы переоборудовали свой автомобиль «на газ», то советую изучить статью Газобаллонное оборудование. Схема ГБО.

Основные механизмы двигателя внутреннего сгорания:

  • кривошипно-шатунный механизм,
  • газораспределительный механизм,
  • система питания (топливная),
  • система выпуска отработавших газов,
  • система зажигания,
  • система охлаждения,
  • система смазки.

Устройство двигателя внутреннего сгорания

Для начала, возьмем простейший одноцилиндровый двигатель и разберемся с его устройством и работой. Рассмотрим протекающие в нем процессы, и выясним откуда все-таки берется тот самый крутящий момент, который в конечном итоге приходит на ведущие колеса автомобиля.

Одна из основных деталей двигателя — цилиндр 6, в котором находится поршень 7, соединенный через шатун 9 с коленчатым валом 12. При перемещении поршня в цилиндре вверх и вниз его прямолинейное движение шатун и кривошип преобразуют во вращательное движение коленчатого вала.

На конце вала закреплен маховик 10, который необходим для равномерности вращения вала при работе двигателя. Сверху цилиндр плотно закрыт головкой, в которой находятся впускной 5 и выпускной клапаны, закрывающие соответствующие каналы.

Клапаны открываются под действием кулачков распределительного вала 14 через передаточные детали 15. Распределительный вал приводится во вращение шестернями 13 от коленчатого вала. Поршень, свободно перемещаясь в цилиндре, занимает два крайних положения.

Для нормальной работы двигателя в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Для уменьшения затрат работы на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.

Понятия и термины при работе двигателя

Верхняя мертвая точка (ВМТ) – это крайнее верхнее положение поршня.

Нижняя мертвая точка (НМТ) – это крайнее нижнее положение поршня.

Ход поршня – это расстояние, пройденное от одной мертвой точки до другой. За один ход поршня коленчатый вал повернется на полоборота.

Камера сгорания (сжатия) – это пространство между головкой цилиндра и поршнем, расположенным в ВМТ.

Рабочий объем цилиндра – это пространство, освобождаемое поршнем при перемещение его из ВМТ в НМТ.

Рабочий объем двигателя – это сумма рабочих объемов всех цилиндров двигателя. При малых объемах (до 1 л.) его выражают в кубических сантиметрах, а при больших – в литрах.

Полный объем цилиндра – сумма объема камеры сгорания и рабочего объема.

Степень сжатия – это число, показывающее, во сколько раз полный объем цилиндра больше объема камеры сгорания. В бензиновых двигателях степень сжатия бывает от 8 до 12, а в дизелях – от 14 до 18. Степень сжатия не стоит путать с компрессией, т.к. это два разных понятия.

Такт – процесс (часть цикла), который происходит в цилиндре за один ход поршня. Двигатель, у которого рабочий цикл происходит за четыре хода поршня, называют четырехтактным.

Как работает двигатель внутреннего сгорания

При работе поршневого двигателя внутреннего сгорания поршень совместно с верхней головкой шатуна движется в цилиндре поступательно (вверх – вниз), при этом коленчатый вал совместно с нижней головкой шатуна совершает вращательные движения. У подавляющего большинства двигателей, если смотреть на двигатель со стороны шкива, вращение коленчатого вала осуществляется по часовой стрелке. За один оборот коленчатого вала (360°) поршень в цилиндре совершает два хода (один ход вверх и один вниз).

При постоянной скорости вращения коленчатого вала двигателя, поршень в цилиндре движется с ускорением – замедлением. Наименьшие скорости движения поршня будут наблюдаться при его «крайних» положениях в цилиндре – в верхней (ВМТ) и нижней части (НМТ). В верхней и нижней части цилиндра поршень «вынужден» сделать остановку, чтобы поменять направление движения.


Рабочий цикл четырехтактного двигателя: а) впуск, б) сжатие, в) рабочий ход, г) выпуск.
Работа двигателя складывается из совокупности процессов, протекающих в цилиндрах двигателя с определённой последовательностью. Эти процессы называют рабочим циклом и состоит из тактов впуска, сжатия, рабочего хода и выпуска. Подробнее в статье Принцип работы ДВС. Рабочие циклы двигателя.

Об устройстве двигателя также рассказано в данных статьях:

  • Дизельные двигатели. Устройство и принцип работы
  • Как работает двигатель (из цикла передачи ‘как это устроено’)

Как же устроен ДВС

Двигатель внутреннего сгорания – это основной вид автомобильных силовых агрегатов на сегодняшний день. Принцип работы двигателя внутреннего сгорания основывается на эффекте теплового расширения газов, возникающего во время сгорания в цилиндре топливно-воздушной смеси.

  1. Самые распространенные виды двигателей
  2. Общее устройство ДВС
  3. Рабочий цикл мотора
  4. Двухтактные моторы

Самые распространенные виды двигателей

Существует три разновидности ДВС: поршневой, роторно-поршневой силовой агрегат системы Ванкеля и газотурбинный. За редким исключением на современные авто устанавливаются четырехтактные поршневые моторы. Причина кроется в низкой цене, компактности, малом весе, многотопливности и возможности установки практически на любые транспортные средства.

Сам по себе двигатель автомобиля – это механизм, преобразующий тепловую энергию горящего топлива в механическую, работу которого обеспечивает множество систем, узлов и агрегатов. Поршневые ДВС бывают двух- и четырехтактными. Понять принцип работы двигателя автомобиля проще всего на примере четырехтактного одноцилиндрового силового агрегата.

Четырехтактным мотор называется потому, что один рабочий цикл состоит из четырех движений поршня (тактов) или двух оборотов коленчатого вала:

  • впуск;
  • сжатие;
  • рабочий ход;
  • выпуск.

Общее устройство ДВС

Чтобы понять принцип работы мотора, необходимо в общих чертах представить его устройство. Основными частями являются:

  1. блок цилиндров (в нашем случае цилиндр один);
  2. кривошипно-шатунный механизм, состоящий из коленчатого вала, шатунов и поршней;
  3. головка блока с газораспределительным механизмом (ГРМ).


Кривошипно-шатунный механизм обеспечивает преобразование поступательно-возвратного движения поршней во вращение коленчатого вала. Поршни приходят в движение благодаря энергии сгорающего в цилиндрах топлива.

Работа данного механизма невозможна без работы механизма газораспределения, который обеспечивает своевременное открытие впускных и выпускных клапанов для впуска рабочей смеси и выпуска отработавших газов. Состоит ГРМ из одного или нескольких распределительных валов, имеющих кулачки, толкающие клапаны (не менее двух на каждый цилиндр), клапанов и возвратных пружин.

Двигатель внутреннего сгорания способен работать только при слаженной работе вспомогательных систем, к которым относятся:

  • система зажигания, отвечающая за воспламенение горючей смеси в цилиндрах;
  • впускная система, обеспечивающая подачу воздуха для образования рабочей смеси;
  • топливная система, обеспечивающая непрерывную подачу топлива и получение смеси горючего с воздухом;
  • система смазки, предназначенная для смазывания трущихся деталей и удаления продуктов износа;
  • выхлопная система, которая обеспечивает удаление отработавших газов из цилиндров ДВС и снижение их токсичности;
  • система охлаждения, необходимая для поддержания оптимальной температуры для работы силового агрегата.

Рабочий цикл мотора

Как было сказано выше, цикл состоит из четырех тактов. Во время первого такта кулачок распредвала толкает впускной клапан, открывая его, поршень начинает двигаться из крайнего верхнего положения вниз. При этом в цилиндре создается разрежение, благодаря которому в цилиндр поступает готовая рабочая смесь, либо воздух, если двигатель внутреннего сгорания оснащен системой непосредственного впрыска топлива (в таком случае горючее смешивается с воздухом непосредственно в камере сгорания).

Поршень через шатун сообщает движение коленчатому валу, поворачивая его на 180 градусов к моменту достижения крайнего нижнего положения.

Во время второго такта – сжатия – впускной клапан (или клапаны) закрывается, поршень меняет направление движения на противоположное, сжимая и нагревая рабочую смесь или воздух. По окончанию такта, системой зажигания на свечу подается электрический разряд, и образуется искра, поджигающая сжатую топливно-воздушную смесь.

Принцип воспламенения горючего у дизельного ДВС иной: в завершении такта сжатия, через форсунку, в камеру сгорания впрыскивается мелкораспыленное дизтопливо, где оно смешивается с нагретым воздухом, и происходит самовоспламенение получившейся смеси. Необходимо отметить, что по этой причине степень сжатия дизеля намного выше.

Коленвал тем временем повернулся еще на 180 градусов, сделав один полный оборот.

Третий такт именуется рабочим ходом. Образующиеся во время сгорания топлива газы, расширяясь, толкают поршень в крайнее нижнее положение. Поршень передает энергию коленвалу через шатун и поворачивает его еще на пол-оборота.

По достижении нижней мертвой точки начинается заключительный такт – выпуск. В начале данного такта кулачок распределительного вала толкает и открывает выпускной клапан, поршень движется вверх и выгоняет отработавшие газы из цилиндра.

ДВС, устанавливаемые на современные автомобили, имеют не один цилиндр, а несколько. Для равномерной работы мотора в один и тот же момент времени в разных цилиндрах выполняются разные такты, и каждые пол-оборота коленвала как минимум в одном цилиндре происходит рабочий ход (исключение составляют 2- и 3-цилиндровые моторы). Благодаря этому удается избавиться от лишних вибраций, уравновешивая силы, действующие на коленвал и обеспечить ровную работу ДВС. Шатунные шейки расположены на валу под равными углами относительно друг друга.

Из соображений компактности многоцилиндровые моторы делают не рядными, а V-образными или оппозитными (визитная карточка фирмы Subaru). Это позволяет сэкономить немало пространства под капотом.

Двухтактные моторы

Помимо четырехтактных поршневых ДВС существуют двухтактные. Принцип их работы несколько отличается от описанного выше. Устройство такого мотора проще. В цилиндре имеется для окна – впускное и выпускное, расположенное выше. Поршень, находясь в НМТ, перекрывает впускное окно, затем, двигаясь вверх, перекрывает выпускное и сжимает рабочую смесь. По достижении им ВМТ на свече образуется искра и поджигает смесь. В это время впускное окно оказывается открытым, и через него в кривошипную камеру попадает очередная доза топливно-воздушной смеси.

Во время второго такта, двигаясь вниз под воздействием газов, поршень открывает выпускное окно, через которое отработавшие газы выдуваются из цилиндра новой порцией рабочей смеси, которая попадает в цилиндр через продувочный канал. Частично рабочая смесь при этом также уходит в выпускное окно, что объясняет прожорливость двухтактного ДВС.
” alt=””>
Подобный принцип работы позволяет достичь большей мощности двигателя при меньшем рабочем объеме, однако за это приходится расплачиваться большим расходом топлива. К преимуществам таких моторов можно отнести более равномерную работу, простую конструкцию, малый вес и высокую удельную мощность. Из недостатков следует упомянуть более грязный выхлоп, отсутствие систем смазки и охлаждения, что грозит перегревом и выходом агрегата из строя.